use bnum::{BInt,cast::As}; use typenum::Unsigned; use std::marker::PhantomData; #[derive(Clone,Copy,Debug,Hash)] pub struct Fixed<const CHUNKS:usize,Frac>{ pub(crate)bits:BInt<{CHUNKS}>, pub(crate)frac:PhantomData<Frac>, } impl<const CHUNKS:usize,Frac:Unsigned> Fixed<CHUNKS,Frac>{ pub const MAX:Self=Self{bits:BInt::<CHUNKS>::MAX,frac:PhantomData}; pub const MIN:Self=Self{bits:BInt::<CHUNKS>::MIN,frac:PhantomData}; pub const ZERO:Self=Self{bits:BInt::<CHUNKS>::ZERO,frac:PhantomData}; pub const ONE:Self=Self{bits:BInt::<CHUNKS>::ONE.shl(Frac::U32),frac:PhantomData}; pub const TWO:Self=Self{bits:BInt::<CHUNKS>::TWO.shl(Frac::U32),frac:PhantomData}; pub const HALF:Self=Self{bits:BInt::<CHUNKS>::ONE.shl(Frac::U32-1),frac:PhantomData}; pub const NEG_ONE:Self=Self{bits:BInt::<CHUNKS>::NEG_ONE.shl(Frac::U32),frac:PhantomData}; pub const NEG_TWO:Self=Self{bits:BInt::<CHUNKS>::NEG_TWO.shl(Frac::U32),frac:PhantomData}; pub const NEG_HALF:Self=Self{bits:BInt::<CHUNKS>::NEG_ONE.shl(Frac::U32-1),frac:PhantomData}; } impl<const CHUNKS:usize,Frac:Unsigned,T> From<T> for Fixed<CHUNKS,Frac> where BInt<CHUNKS>:From<T> { fn from(value:T)->Self{ Self{ bits:BInt::<{CHUNKS}>::from(value)<<Frac::U32, frac:PhantomData, } } } impl<const CHUNKS:usize,Frac> PartialEq for Fixed<CHUNKS,Frac>{ fn eq(&self,other:&Self)->bool{ self.bits.eq(&other.bits) } } impl<const CHUNKS:usize,Frac> Eq for Fixed<CHUNKS,Frac>{} impl<const CHUNKS:usize,Frac> PartialOrd for Fixed<CHUNKS,Frac>{ fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{ self.bits.partial_cmp(&other.bits) } } impl<const CHUNKS:usize,Frac> Ord for Fixed<CHUNKS,Frac>{ fn cmp(&self,other:&Self)->std::cmp::Ordering{ self.bits.cmp(&other.bits) } } impl<const CHUNKS:usize,Frac> std::ops::Neg for Fixed<CHUNKS,Frac>{ type Output=Self; fn neg(self)->Self{ Self{ bits:self.bits.neg(), frac:PhantomData, } } } macro_rules! impl_additive_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const CHUNKS:usize,Frac> core::ops::$trait for $struct<CHUNKS,Frac>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { Self { bits:self.bits.$method(other.bits), frac:PhantomData, } } } impl<const CHUNKS:usize,Frac:Unsigned,U> core::ops::$trait<U> for $struct<CHUNKS,Frac> where BInt::<CHUNKS>:From<U>, { type Output = $output; fn $method(self, other: U) -> Self::Output { Self { bits:self.bits.$method(BInt::<CHUNKS>::from(other)<<Frac::U32), frac:PhantomData, } } } }; } macro_rules! impl_additive_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const CHUNKS:usize,Frac> core::ops::$trait for $struct<CHUNKS,Frac>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } impl<const CHUNKS:usize,Frac:Unsigned,U> core::ops::$trait<U> for $struct<CHUNKS,Frac> where BInt::<CHUNKS>:From<U>, { fn $method(&mut self, other: U) { self.bits.$method(BInt::<CHUNKS>::from(other)<<Frac::U32); } } }; } // Impl arithmetic pperators impl_additive_assign_operator!( Fixed, AddAssign, add_assign ); impl_additive_operator!( Fixed, Add, add, Self ); impl_additive_assign_operator!( Fixed, SubAssign, sub_assign ); impl_additive_operator!( Fixed, Sub, sub, Self ); impl_additive_assign_operator!( Fixed, RemAssign, rem_assign ); impl_additive_operator!( Fixed, Rem, rem, Self ); // Impl bitwise operators impl_additive_assign_operator!( Fixed, BitAndAssign, bitand_assign ); impl_additive_operator!( Fixed, BitAnd, bitand, Self ); impl_additive_assign_operator!( Fixed, BitOrAssign, bitor_assign ); impl_additive_operator!( Fixed, BitOr, bitor, Self ); impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign ); impl_additive_operator!( Fixed, BitXor, bitxor, Self ); macro_rules! impl_multiply_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<Frac:Unsigned> core::ops::$trait for $struct<$width,Frac>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { //this can be done better but that is a job for later let lhs=self.bits.as_::<BInt::<{$width*2}>>(); let rhs=other.bits.as_::<BInt::<{$width*2}>>(); Self { bits:lhs.mul(rhs).shr(Frac::U32).as_(), frac:PhantomData, } } } }; } macro_rules! impl_multiply_assign_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { impl<Frac> core::ops::$trait for $struct<$width,Frac>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } }; } macro_rules! impl_divide_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<Frac:Unsigned> core::ops::$trait for $struct<$width,Frac>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { //this can be done better but that is a job for later //this only needs to be $width+Frac::U32/64+1 but MUH CONST GENERICS!!!!! let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(Frac::U32); let rhs=other.bits.as_::<BInt::<{$width*2}>>(); Self { bits:lhs.div(rhs).as_(), frac:PhantomData, } } } }; } macro_rules! impl_divide_assign_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { impl<Frac> core::ops::$trait for $struct<$width,Frac>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } }; } macro_rules! impl_multiplicatave_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const CHUNKS:usize,Frac,U> core::ops::$trait<U> for $struct<CHUNKS,Frac> where BInt::<CHUNKS>:From<U>+core::ops::$trait, { type Output = $output; fn $method(self, other: U) -> Self::Output { Self { bits:self.bits.$method(BInt::<CHUNKS>::from(other)), frac:PhantomData, } } } }; } macro_rules! impl_multiplicatave_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const CHUNKS:usize,Frac,U> core::ops::$trait<U> for $struct<CHUNKS,Frac> where BInt::<CHUNKS>:From<U>+core::ops::$trait, { fn $method(&mut self, other: U) { self.bits.$method(BInt::<CHUNKS>::from(other)); } } }; } macro_rules! impl_operator_16 { ( $macro: ident, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { $macro!(1,$struct,$trait,$method,$output); $macro!(2,$struct,$trait,$method,$output); $macro!(3,$struct,$trait,$method,$output); $macro!(4,$struct,$trait,$method,$output); $macro!(5,$struct,$trait,$method,$output); $macro!(6,$struct,$trait,$method,$output); $macro!(7,$struct,$trait,$method,$output); $macro!(8,$struct,$trait,$method,$output); $macro!(9,$struct,$trait,$method,$output); $macro!(10,$struct,$trait,$method,$output); $macro!(11,$struct,$trait,$method,$output); $macro!(12,$struct,$trait,$method,$output); $macro!(13,$struct,$trait,$method,$output); $macro!(14,$struct,$trait,$method,$output); $macro!(15,$struct,$trait,$method,$output); $macro!(16,$struct,$trait,$method,$output); } } macro_rules! impl_assign_operator_16 { ( $macro: ident, $struct: ident, $trait: ident, $method: ident ) => { $macro!(1,$struct,$trait,$method); $macro!(2,$struct,$trait,$method); $macro!(3,$struct,$trait,$method); $macro!(4,$struct,$trait,$method); $macro!(5,$struct,$trait,$method); $macro!(6,$struct,$trait,$method); $macro!(7,$struct,$trait,$method); $macro!(8,$struct,$trait,$method); $macro!(9,$struct,$trait,$method); $macro!(10,$struct,$trait,$method); $macro!(11,$struct,$trait,$method); $macro!(12,$struct,$trait,$method); $macro!(13,$struct,$trait,$method); $macro!(14,$struct,$trait,$method); $macro!(15,$struct,$trait,$method); $macro!(16,$struct,$trait,$method); } } impl_assign_operator_16!( impl_multiply_assign_operator_const, Fixed, MulAssign, mul_assign ); impl_operator_16!( impl_multiply_operator_const, Fixed, Mul, mul, Self ); impl_assign_operator_16!( impl_divide_assign_operator_const, Fixed, DivAssign, div_assign ); impl_operator_16!( impl_divide_operator_const, Fixed, Div, div, Self ); impl_multiplicatave_assign_operator!( Fixed, MulAssign, mul_assign ); impl_multiplicatave_operator!( Fixed, Mul, mul, Self ); impl_multiplicatave_assign_operator!( Fixed, DivAssign, div_assign ); impl_multiplicatave_operator!( Fixed, Div, div, Self ); macro_rules! impl_shift_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const CHUNKS:usize,Frac> core::ops::$trait<u32> for $struct<CHUNKS,Frac>{ type Output = $output; fn $method(self, other: u32) -> Self::Output { Self { bits:self.bits.$method(other), frac:PhantomData, } } } }; } macro_rules! impl_shift_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const CHUNKS:usize,Frac> core::ops::$trait<u32> for $struct<CHUNKS,Frac>{ fn $method(&mut self, other: u32) { self.bits.$method(other); } } }; } impl_shift_assign_operator!( Fixed, ShlAssign, shl_assign ); impl_shift_operator!( Fixed, Shl, shl, Self ); impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign ); impl_shift_operator!( Fixed, Shr, shr, Self ); impl<const CHUNKS:usize,Frac:Unsigned> Fixed<CHUNKS,Frac> where Fixed::<CHUNKS,Frac>:std::ops::Mul<Fixed<CHUNKS,Frac>,Output=Fixed<CHUNKS,Frac>>, { pub fn sqrt_unchecked(self)->Self{ //pow2 must be the minimum power of two which when squared is greater than self //0001.0000 Fixed<u8,4> //sqrt //0110.0000 //pow2 = 0100.0000 let mut pow2=Self{ bits:BInt::<CHUNKS>::ONE.shl((((CHUNKS as i32*64-Frac::I32-(self.bits.leading_zeros() as i32)+1)>>1)+Frac::I32) as u32), frac:PhantomData, }; let mut result=pow2>>1; while pow2!=Self::ZERO{ pow2>>=1; let new_result=result+pow2; if new_result*new_result<=self{ result=new_result; } } result } pub fn sqrt(self)->Self{ if self<Self::ZERO{ panic!("Square root less than zero") }else{ self.sqrt_unchecked() } } pub fn sqrt_checked(self)->Option<Self>{ if self<Self::ZERO{ None }else{ Some(self.sqrt_unchecked()) } } }