Compare commits

...

101 Commits

Author SHA1 Message Date
c5fb915a6d div_euclid 2024-10-12 10:01:06 -07:00
a274b6d232 not that important 2024-10-03 12:31:41 -07:00
218a7fbf0f more general PartialEq + PartialOrd 2024-10-03 12:27:38 -07:00
64e44846aa v0.1.1 from float 2024-10-02 14:40:39 -07:00
0d05540a6b from float + tests 2024-10-01 15:01:30 -07:00
9b3dde66bd change to float tests 2024-10-01 15:00:06 -07:00
a65eef3609 fix to float 2024-10-01 14:59:33 -07:00
c4a2778af1 explicitly implement From for specific types 2024-09-30 17:08:46 -07:00
46bb2bac4e deconstruct array instead of indexing 2024-09-30 17:08:12 -07:00
c6b4cc29b8 all dependencies must have a version specified 2024-09-30 10:21:59 -07:00
9a7ebb0f0a licensing and registration 2024-09-30 10:18:25 -07:00
438d0ec6ec test zeroes 2024-09-26 18:08:33 -07:00
94e23b7f0f idk what I'm doing 2024-09-26 18:08:20 -07:00
e6cd239dcb fix zeroes 2024-09-26 15:26:18 -07:00
8d97ffba92 column major 2024-09-26 15:06:05 -07:00
e46f4fb900 save a copy in sqrt using epic bnum 0.12 feature (pulled by yours truly) 2024-09-26 15:06:05 -07:00
2b58204cb9 update bnum 2024-09-26 15:06:05 -07:00
b91f061797 implement same-size wide mul more efficiently 2024-09-25 09:46:56 -07:00
102ea607ab Ratio Parity trait 2024-09-23 11:30:35 -07:00
ba357ee99b efficient fixed mul 2024-09-21 15:42:29 -07:00
546a4aa8c7 test negative 2024-09-18 11:50:34 -07:00
94cd23fe4b add ratio tests 2024-09-18 10:44:18 -07:00
bc773f7d45 test fix better 2024-09-17 15:10:11 -07:00
934475b959 fix fix 2024-09-17 15:10:07 -07:00
665d528b87 remove debug from float builder 2024-09-17 14:48:21 -07:00
865d7a7886 float tests 2024-09-17 14:47:18 -07:00
031cd6e771 float builder (debug version) 2024-09-17 14:47:14 -07:00
6dbe96fca2 Fixed<1,_>::to_raw() 2024-09-16 15:48:52 -07:00
655a6da251 cheese extrapolate div 2024-09-16 15:02:43 -07:00
a100f182e1 Fix trait 2024-09-16 15:02:31 -07:00
0734122e75 ratio: ord methods 2024-09-16 11:46:05 -07:00
4e284311e1 this depends on that 2024-09-15 20:30:09 -07:00
0cd28e402e fixed: special case for convenience 2024-09-13 14:00:40 -07:00
260ed0fd5c ratio: PartialEq, Eq, PartialOrd, Ord 2024-09-13 14:00:13 -07:00
ec82745c6d matrix: from_rows 2024-09-12 12:16:58 -07:00
10e56fb0b9 default numba (use with care) 2024-09-12 12:16:58 -07:00
5646bd3b5a fixed width specific impls 2024-09-12 10:52:57 -07:00
6cb639317c const helpers 2024-09-11 15:15:06 -07:00
db5c37c2fb implement 'fix' function that changes the fixed point 2024-09-11 14:06:34 -07:00
a73a32f2ad Divide trait 2024-09-11 13:29:13 -07:00
44ac6fe4be fixed_wide: no default features 2024-09-11 12:59:22 -07:00
1a24de3cd9 deferred division for vector + matrix 2024-09-11 12:20:17 -07:00
9f77531995 implement Debug + Display 2024-09-11 12:06:58 -07:00
7b78338c76 fix tests :/ 2024-09-10 14:50:35 -07:00
021d7f9d1f implement mul + div only for scalars (otherwise conflicting implementations) 2024-09-10 14:20:07 -07:00
338669b60f implement shift operators 2024-09-10 13:45:12 -07:00
085d9185a9 ratio operators 2024-09-10 13:22:49 -07:00
1fd7a6eafd fixed: inline functions Q_Q 2024-09-10 13:05:10 -07:00
91b96e4b5d move ratio to own crate (again) 2024-09-10 12:09:58 -07:00
fc65d0f1f4 rename fixed_wide_vectors to linear_ops 2024-09-10 11:57:18 -07:00
4eaf8794f6 fix compile without named fields 2024-09-10 11:36:48 -07:00
fa8614891d zeroes function uses type transformation, drops direct ratio dep from zeroes 2024-09-10 11:36:48 -07:00
c20a0a4a89 compare with From types 2024-09-10 11:36:48 -07:00
e66a245c78 delete fixed-wide 2024-09-10 11:36:48 -07:00
eb7eb30814 impl det + adjugate with trait bounds 2024-09-09 19:54:00 -07:00
57c3f2dd9e write m*v test 2024-09-09 19:54:00 -07:00
b772647137 impl Mat*Vec 2024-09-09 19:54:00 -07:00
dd2140d1d2 forgotten inlines 2024-09-09 19:54:00 -07:00
6cbd3446e5 impl matrix multiplication with Mul 2024-09-09 19:54:00 -07:00
b6d260bf2c update tests to use new ideas 2024-09-09 19:54:00 -07:00
53bb1522eb impl dot + cross + length_squared with trait bounds 2024-09-09 19:54:00 -07:00
206e219467 wide-mul crate feature 2024-09-09 19:54:00 -07:00
8ee6204a42 invent wide_div + test 2024-09-09 15:24:49 -07:00
803f1bea9e extract trait impls into named functions + fix spelling 2024-09-09 15:24:49 -07:00
62419e94e1 consistency 2024-09-09 14:14:48 -07:00
d3c4d530b6 refactor macros, move things around 2024-09-09 14:14:48 -07:00
898407a0e9 matrix and vector extend functions 2024-09-06 13:24:03 -07:00
66186c7354 doc 2024-09-06 13:03:55 -07:00
36c769346c use inline const constructor because it's a little bit prettier 2024-09-06 11:44:43 -07:00
5f2bec75f5 enable matrix mul test 2024-09-06 11:38:29 -07:00
7a9aaf9fe0 matrix mul 2024-09-06 11:38:22 -07:00
9ad90cea2e fix tests 2024-09-06 11:25:51 -07:00
f2fec0b3b9 implement a bunch of fixed wide stuff 2024-09-06 11:25:46 -07:00
dae72d73d5 convert to row-major 2024-09-06 10:52:17 -07:00
4a1eff40da matrix multiplication ascii art 2024-09-06 10:44:30 -07:00
d5bd82761a fix dot test 2024-09-06 10:36:34 -07:00
5cad8637cd tweak dot 2024-09-06 10:36:24 -07:00
607706ee2a nope 2024-09-05 17:56:09 -07:00
2312ee27b7 test vector and matrix (TODO: Debug trait) 2024-09-05 17:56:09 -07:00
4d2aa0b2c8 is this better? 2024-09-05 17:44:44 -07:00
34450d6a13 matrix multiplication 2024-09-05 17:37:38 -07:00
1a6ece1312 epic const generic array transpose
verified that this loop unrolls on compiler explorer
2024-09-05 17:36:45 -07:00
e95f675e91 test named fields 2024-09-05 16:56:59 -07:00
504ff37c47 write a test 2024-09-05 16:45:44 -07:00
41cdd03b1b wip fixed wide 2024-09-05 16:32:19 -07:00
e375173625 keep generic operators and only implement i64 convenience operator 2024-09-05 16:18:13 -07:00
488a6b6496 fix vector bool code 2024-09-05 16:08:53 -07:00
5cdd2c3ee1 must be less generic to avoid conflict with convenience operators 2024-09-05 16:05:47 -07:00
a0da6873c1 vector operators 2024-09-05 15:56:44 -07:00
345d5737a2 more generic Neg operator 2024-09-05 15:56:35 -07:00
f4d28dd3c3 use derive macros 2024-09-05 15:43:26 -07:00
c362081003 implement a bunch of stuff 2024-09-05 15:43:26 -07:00
990a923463 fixup tests 2024-09-05 13:53:03 -07:00
56b781fcb8 we build 2024-09-05 13:52:54 -07:00
e026f6efed wip 2024-09-05 13:36:38 -07:00
e475da5fb4 put that back 2024-09-05 13:16:02 -07:00
c3026c67e9 delete everything and start over 2024-09-05 12:49:20 -07:00
103697fbdd matrix: test det + adjugate 2024-09-04 13:55:11 -07:00
cf17460b77 special case 3d vectors and matrices 2024-09-04 13:47:50 -07:00
823a05c101 matrix: directly implement dot product to avoid a copy 2024-09-04 12:11:52 -07:00
e5f95b97ce matrix: macro mat mul 2024-09-04 12:11:52 -07:00
46 changed files with 2608 additions and 1078 deletions

11
fixed_wide/Cargo.lock generated
View File

@ -10,17 +10,18 @@ checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]] [[package]]
name = "bnum" name = "bnum"
version = "0.11.0" version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790" checksum = "50202def95bf36cb7d1d7a7962cea1c36a3f8ad42425e5d2b71d7acb8041b5b8"
[[package]] [[package]]
name = "fixed_wide" name = "fixed_wide"
version = "0.1.0" version = "0.1.1"
dependencies = [ dependencies = [
"arrayvec", "arrayvec",
"bnum", "bnum",
"paste", "paste",
"ratio_ops",
] ]
[[package]] [[package]]
@ -28,3 +29,7 @@ name = "paste"
version = "1.0.15" version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a" checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

View File

@ -1,14 +1,20 @@
[package] [package]
name = "fixed_wide" name = "fixed_wide"
version = "0.1.0" version = "0.1.1"
edition = "2021" edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Fixed point numbers with optional widening Mul operator."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[features] [features]
default=["zeroes"] default=[]
ratio=[] deferred-division=["dep:ratio_ops"]
zeroes=["ratio","dep:arrayvec"] wide-mul=[]
zeroes=["dep:arrayvec"]
[dependencies] [dependencies]
bnum = "0.11.0" bnum = "0.12.0"
arrayvec = { version = "0.7.6", optional = true } arrayvec = { version = "0.7.6", optional = true }
paste = "1.0.15" paste = "1.0.15"
ratio_ops = { version = "0.1.0", path = "../ratio_ops", registry = "strafesnet", optional = true }

View File

@ -1,6 +1,7 @@
use bnum::{BInt,cast::As}; use bnum::{BInt,cast::As};
#[derive(Clone,Copy,Debug,Hash)] #[derive(Clone,Copy,Debug,Default,Hash)]
/// A Fixed point number for which multiply operations widen the bits in the output. (when the wide-mul feature is enabled)
/// N is the number of u64s to use /// N is the number of u64s to use
/// F is the number of fractional bits (always N*32 lol) /// F is the number of fractional bits (always N*32 lol)
pub struct Fixed<const N:usize,const F:usize>{ pub struct Fixed<const N:usize,const F:usize>{
@ -32,33 +33,96 @@ impl<const N:usize,const F:usize> Fixed<N,F>{
self.bits self.bits
} }
#[inline] #[inline]
pub const fn raw_digit(value:i64)->Self{
let mut digits=[0u64;N];
digits[0]=value.abs() as u64;
//sign bit
digits[N-1]|=(value&i64::MIN) as u64;
Self::from_bits(BInt::from_bits(bnum::BUint::from_digits(digits)))
}
#[inline]
pub const fn is_zero(self)->bool{
self.bits.is_zero()
}
#[inline]
pub const fn is_negative(self)->bool{
self.bits.is_negative()
}
#[inline]
pub const fn is_positive(self)->bool{
self.bits.is_positive()
}
#[inline]
pub const fn abs(self)->Self{
Self::from_bits(self.bits.abs())
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it
#[inline]
pub const fn raw(value:i64)->Self{ pub const fn raw(value:i64)->Self{
Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64))) Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64)))
} }
} #[inline]
pub const fn to_raw(self)->i64{
impl<const N:usize,const F:usize,T> From<T> for Fixed<N,F> let &[digit]=self.to_bits().to_bits().digits();
where digit as i64
BInt<N>:From<T>
{
fn from(value:T)->Self{
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
} }
} }
macro_rules! impl_from {
($($from:ty),*)=>{
$(
impl<const N:usize,const F:usize> From<$from> for Fixed<N,F>{
#[inline]
fn from(value:$from)->Self{
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
}
}
)*
};
}
impl_from!(
u8,u16,u32,u64,u128,usize,
i8,i16,i32,i64,i128,isize
);
impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{ impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{
#[inline]
fn eq(&self,other:&Self)->bool{ fn eq(&self,other:&Self)->bool{
self.bits.eq(&other.bits) self.bits.eq(&other.bits)
} }
} }
impl<const N:usize,const F:usize,T> PartialEq<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn eq(&self,&other:&T)->bool{
self.bits.eq(&other.into())
}
}
impl<const N:usize,const F:usize> Eq for Fixed<N,F>{} impl<const N:usize,const F:usize> Eq for Fixed<N,F>{}
impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{ impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{
#[inline]
fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{ fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.bits) self.bits.partial_cmp(&other.bits)
} }
} }
impl<const N:usize,const F:usize,T> PartialOrd<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn partial_cmp(&self,&other:&T)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.into())
}
}
impl<const N:usize,const F:usize> Ord for Fixed<N,F>{ impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{ fn cmp(&self,other:&Self)->std::cmp::Ordering{
self.bits.cmp(&other.bits) self.bits.cmp(&other.bits)
} }
@ -66,18 +130,185 @@ impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{ impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{
type Output=Self; type Output=Self;
#[inline]
fn neg(self)->Self{ fn neg(self)->Self{
Self::from_bits(self.bits.neg()) Self::from_bits(self.bits.neg())
} }
} }
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
#[inline]
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
sum+=elem;
}
sum
}
}
const fn signed_shift(lhs:u64,rhs:i32)->u64{
if rhs.is_negative(){
lhs>>-rhs
}else{
lhs<<rhs
}
}
macro_rules! impl_into_float {
( $output: ty, $unsigned:ty, $exponent_bits:expr, $mantissa_bits:expr ) => {
impl<const N:usize,const F:usize> Into<$output> for Fixed<N,F>{
#[inline]
fn into(self)->$output{
const DIGIT_SHIFT:u32=6;//Log2[64]
// SBBB BBBB
// 1001 1110 0000 0000
let sign=if self.bits.is_negative(){(1 as $unsigned)<<(<$unsigned>::BITS-1)}else{0};
let unsigned=self.bits.unsigned_abs();
let most_significant_bit=unsigned.bits();
let exp=if unsigned.is_zero(){
0
}else{
let msb=most_significant_bit as $unsigned;
let _127=((1 as $unsigned)<<($exponent_bits-1))-1;
let msb_offset=msb+_127-1-F as $unsigned;
msb_offset<<($mantissa_bits-1)
};
let digits=unsigned.digits();
let digit_index=most_significant_bit.saturating_sub(1)>>DIGIT_SHIFT;
let digit=digits[digit_index as usize];
//How many bits does the mantissa take from this digit
let take_bits=most_significant_bit-(digit_index<<DIGIT_SHIFT);
let rest_of_mantissa=$mantissa_bits as i32-(take_bits as i32);
let mut unmasked_mant=signed_shift(digit,rest_of_mantissa) as $unsigned;
if 0<rest_of_mantissa&&digit_index!=0{
//take the next digit down and shove some of its bits onto the bottom of the mantissa
let digit=digits[digit_index as usize-1];
let take_bits=most_significant_bit-((digit_index-1)<<DIGIT_SHIFT);
let rest_of_mantissa=$mantissa_bits as i32-(take_bits as i32);
let unmasked_mant2=signed_shift(digit,rest_of_mantissa) as $unsigned;
unmasked_mant|=unmasked_mant2;
}
let mant=unmasked_mant&((1 as $unsigned)<<($mantissa_bits-1))-1;
let bits=sign|exp|mant;
<$output>::from_bits(bits)
}
}
}
}
impl_into_float!(f32,u32,8,24);
impl_into_float!(f64,u64,11,53);
#[inline]
fn integer_decode_f32(f: f32) -> (u64, i16, bool) {
let bits: u32 = f.to_bits();
let sign: bool = bits & (1<<31) != 0;
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
#[inline]
fn integer_decode_f64(f: f64) -> (u64, i16, bool) {
let bits: u64 = f.to_bits();
let sign: bool = bits & (1u64<<63) != 0;
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
#[derive(Debug,Eq,PartialEq)]
pub enum FixedFromFloatError{
Nan,
Infinite,
Overflow,
Underflow,
}
impl FixedFromFloatError{
pub fn underflow_to_zero<const N:usize,const F:usize>(self)->Result<Fixed<N,F>,Self>{
match self{
FixedFromFloatError::Underflow=>Ok(Fixed::ZERO),
_=>Err(self),
}
}
}
macro_rules! impl_from_float {
( $decode:ident, $input: ty, $mantissa_bits:expr ) => {
impl<const N:usize,const F:usize> TryFrom<$input> for Fixed<N,F>{
type Error=FixedFromFloatError;
#[inline]
fn try_from(value:$input)->Result<Self,Self::Error>{
const DIGIT_SHIFT:u32=6;
match value.classify(){
std::num::FpCategory::Nan=>Err(FixedFromFloatError::Nan),
std::num::FpCategory::Infinite=>Err(FixedFromFloatError::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal
|std::num::FpCategory::Normal
=>{
let (m,e,s)=$decode(value);
let mut digits=[0u64;N];
let most_significant_bit=e as i32+$mantissa_bits as i32+F as i32;
if most_significant_bit<0{
return Err(FixedFromFloatError::Underflow);
}
let digit_index=most_significant_bit>>DIGIT_SHIFT;
let digit=digits.get_mut(digit_index as usize).ok_or(FixedFromFloatError::Overflow)?;
let take_bits=most_significant_bit-(digit_index<<DIGIT_SHIFT);
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
*digit=signed_shift(m,rest_of_mantissa);
if rest_of_mantissa<0&&digit_index!=0{
//we don't care if some float bits are partially truncated
if let Some(digit)=digits.get_mut((digit_index-1) as usize){
let take_bits=most_significant_bit-((digit_index-1)<<DIGIT_SHIFT);
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
*digit=signed_shift(m,rest_of_mantissa);
}
}
let bits=BInt::from_bits(bnum::BUint::from_digits(digits));
Ok(if s{
Self::from_bits(bits.overflowing_neg().0)
}else{
Self::from_bits(bits)
})
},
}
}
}
}
}
impl_from_float!(integer_decode_f32,f32,24);
impl_from_float!(integer_decode_f64,f64,53);
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
let float:f32=(*self).into();
core::write!(f,"{:.3}",float)
}
}
macro_rules! impl_additive_operator { macro_rules! impl_additive_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> $struct<N,F>{
#[inline]
pub const fn $method(self, other: Self) -> Self {
Self::from_bits(self.bits.$method(other.bits))
}
}
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{ impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
type Output = $output; type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output { fn $method(self, other: Self) -> Self::Output {
Self::from_bits(self.bits.$method(other.bits)) self.$method(other)
} }
} }
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
@ -85,7 +316,7 @@ macro_rules! impl_additive_operator {
BInt::<N>:From<U>, BInt::<N>:From<U>,
{ {
type Output = $output; type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output { fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32))) Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32)))
} }
@ -95,6 +326,7 @@ macro_rules! impl_additive_operator {
macro_rules! impl_additive_assign_operator { macro_rules! impl_additive_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => { ( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{ impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
#[inline]
fn $method(&mut self, other: Self) { fn $method(&mut self, other: Self) {
self.bits.$method(other.bits); self.bits.$method(other.bits);
} }
@ -103,8 +335,9 @@ macro_rules! impl_additive_assign_operator {
where where
BInt::<N>:From<U>, BInt::<N>:From<U>,
{ {
#[inline]
fn $method(&mut self, other: U) { fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other)<<F as u32); self.bits.$method(BInt::<N>::from(other).shl(F as u32));
} }
} }
}; };
@ -126,137 +359,165 @@ impl_additive_operator!( Fixed, BitOr, bitor, Self );
impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign ); impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign );
impl_additive_operator!( Fixed, BitXor, bitxor, Self ); impl_additive_operator!( Fixed, BitXor, bitxor, Self );
macro_rules! impl_multiply_operator_const { // non-wide operators. The result is the same width as the inputs.
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
// This macro is not used in the default configuration.
#[allow(unused_macros)]
macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{ impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output; type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output { fn $method(self, other: Self) -> Self::Output {
//this can be done better but that is a job for later paste::item!{
let lhs=self.bits.as_::<BInt::<{$width*2}>>(); self.[<fixed_ $method>](other)
let rhs=other.bits.as_::<BInt::<{$width*2}>>(); }
Self::from_bits(lhs.mul(rhs).shr(F as u32).as_())
} }
} }
}; };
} }
macro_rules! impl_multiply_assign_operator_const { macro_rules! impl_multiplicative_assign_operator_not_const_generic {
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { ( ($struct: ident, $trait: ident, $method: ident, $non_assign_method: ident ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{ impl<const F:usize> core::ops::$trait for $struct<$width,F>{
#[inline]
fn $method(&mut self, other: Self) { fn $method(&mut self, other: Self) {
self.bits.$method(other.bits); paste::item!{
*self=self.[<fixed_ $non_assign_method>](other);
}
} }
} }
}; };
} }
macro_rules! impl_divide_operator_const { macro_rules! impl_multiply_operator_not_const_generic {
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { ( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{ impl<const F:usize> $struct<$width,F>{
type Output = $output; paste::item!{
#[inline]
fn $method(self, other: Self) -> Self::Output { pub fn [<fixed_ $method>](self, rhs: Self) -> Self {
//this can be done better but that is a job for later let (low,high)=self.bits.unsigned_abs().widening_mul(rhs.bits.unsigned_abs());
let out:BInt::<{$width*2}>=unsafe{core::mem::transmute([low,high])};
if self.is_negative()==rhs.is_negative(){
Self::from_bits(out.shr(F as u32).as_())
}else{
-Self::from_bits(out.shr(F as u32).as_())
}
}
}
}
#[cfg(not(feature="wide-mul"))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
#[cfg(feature="deferred-division")]
impl ratio_ops::ratio::Divide<i64> for Fixed<$width,{$width*32}>{
type Output=Self;
#[inline]
fn divide(self, other: i64)->Self::Output{
Self::from_bits(self.bits.div_euclid(BInt::from(other)))
}
}
}
}
macro_rules! impl_divide_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self,other:Self)->Self{
//this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!! //this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!!
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32); let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32);
let rhs=other.bits.as_::<BInt::<{$width*2}>>(); let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.div(rhs).as_()) Self::from_bits(lhs.div_euclid(rhs).as_())
} }
} }
}; }
} #[cfg(all(not(feature="wide-mul"),not(feature="deferred-division")))]
macro_rules! impl_divide_assign_operator_const { impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { #[cfg(all(not(feature="wide-mul"),feature="deferred-division"))]
impl<const F:usize> core::ops::$trait for $struct<$width,F>{ impl<const F:usize> ratio_ops::ratio::Divide for $struct<$width,F>{
fn $method(&mut self, other: Self) { type Output = $output;
self.bits.$method(other.bits); #[inline]
fn divide(self, other: Self) -> Self::Output {
paste::item!{
self.[<fixed_ $method>](other)
}
} }
} }
}; };
} }
macro_rules! impl_multiplicatave_operator { macro_rules! impl_multiplicative_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { ( $struct: ident, $trait: ident, $method: ident, $inner_method: ident, $output: ty ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where where
BInt::<N>:From<U>+core::ops::$trait, BInt::<N>:From<U>+core::ops::$trait,
{ {
type Output = $output; type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output { fn $method(self,other:U)->Self::Output{
Self::from_bits(self.bits.$method(BInt::<N>::from(other))) Self::from_bits(self.bits.$inner_method(BInt::<N>::from(other)))
} }
} }
}; };
} }
macro_rules! impl_multiplicatave_assign_operator { macro_rules! impl_multiplicative_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => { ( $struct: ident, $trait: ident, $method: ident, $not_assign_method: ident ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where where
BInt::<N>:From<U>+core::ops::$trait, BInt::<N>:From<U>+core::ops::$trait,
{ {
fn $method(&mut self, other: U) { #[inline]
self.bits.$method(BInt::<N>::from(other)); fn $method(&mut self,other:U){
self.bits=self.bits.$not_assign_method(BInt::<N>::from(other));
} }
} }
}; };
} }
macro_rules! impl_operator_16 { macro_rules! macro_repeated{
( $macro: ident, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { (
$macro!(1,$struct,$trait,$method,$output); $macro:ident,
$macro!(2,$struct,$trait,$method,$output); $any:tt,
$macro!(3,$struct,$trait,$method,$output); $($repeated:tt),*
$macro!(4,$struct,$trait,$method,$output); )=>{
$macro!(5,$struct,$trait,$method,$output); $(
$macro!(6,$struct,$trait,$method,$output); $macro!($any, $repeated);
$macro!(7,$struct,$trait,$method,$output); )*
$macro!(8,$struct,$trait,$method,$output); };
$macro!(9,$struct,$trait,$method,$output);
$macro!(10,$struct,$trait,$method,$output);
$macro!(11,$struct,$trait,$method,$output);
$macro!(12,$struct,$trait,$method,$output);
$macro!(13,$struct,$trait,$method,$output);
$macro!(14,$struct,$trait,$method,$output);
$macro!(15,$struct,$trait,$method,$output);
$macro!(16,$struct,$trait,$method,$output);
}
} }
macro_rules! impl_assign_operator_16 {
( $macro: ident, $struct: ident, $trait: ident, $method: ident ) => { macro_rules! macro_16 {
$macro!(1,$struct,$trait,$method); ( $macro: ident, $any:tt ) => {
$macro!(2,$struct,$trait,$method); macro_repeated!($macro,$any,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
$macro!(3,$struct,$trait,$method);
$macro!(4,$struct,$trait,$method);
$macro!(5,$struct,$trait,$method);
$macro!(6,$struct,$trait,$method);
$macro!(7,$struct,$trait,$method);
$macro!(8,$struct,$trait,$method);
$macro!(9,$struct,$trait,$method);
$macro!(10,$struct,$trait,$method);
$macro!(11,$struct,$trait,$method);
$macro!(12,$struct,$trait,$method);
$macro!(13,$struct,$trait,$method);
$macro!(14,$struct,$trait,$method);
$macro!(15,$struct,$trait,$method);
$macro!(16,$struct,$trait,$method);
} }
} }
impl_assign_operator_16!( impl_multiply_assign_operator_const, Fixed, MulAssign, mul_assign ); macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, MulAssign, mul_assign, mul) );
impl_operator_16!( impl_multiply_operator_const, Fixed, Mul, mul, Self ); macro_16!( impl_multiply_operator_not_const_generic, (Fixed, Mul, mul, Self) );
impl_assign_operator_16!( impl_divide_assign_operator_const, Fixed, DivAssign, div_assign ); macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, DivAssign, div_assign, div) );
impl_operator_16!( impl_divide_operator_const, Fixed, Div, div, Self ); macro_16!( impl_divide_operator_not_const_generic, (Fixed, Div, div, Self) );
impl_multiplicatave_assign_operator!( Fixed, MulAssign, mul_assign ); impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign, mul );
impl_multiplicatave_operator!( Fixed, Mul, mul, Self ); impl_multiplicative_operator!( Fixed, Mul, mul, mul, Self );
impl_multiplicatave_assign_operator!( Fixed, DivAssign, div_assign ); impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign, div_euclid );
impl_multiplicatave_operator!( Fixed, Div, div, Self ); impl_multiplicative_operator!( Fixed, Div, div, div_euclid, Self );
#[cfg(feature="deferred-division")]
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
#[inline]
fn div(self, other: Fixed<RHS_N,RHS_F>)->Self::Output{
ratio_ops::ratio::Ratio::new(self,other)
}
}
#[cfg(feature="deferred-division")]
impl<const N:usize,const F:usize> ratio_ops::ratio::Parity for Fixed<N,F>{
fn parity(&self)->bool{
self.is_negative()
}
}
macro_rules! impl_shift_operator { macro_rules! impl_shift_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{ impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
type Output = $output; type Output = $output;
#[inline]
fn $method(self, other: u32) -> Self::Output { fn $method(self, other: u32) -> Self::Output {
Self::from_bits(self.bits.$method(other)) Self::from_bits(self.bits.$method(other))
} }
@ -266,6 +527,7 @@ macro_rules! impl_shift_operator {
macro_rules! impl_shift_assign_operator { macro_rules! impl_shift_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => { ( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{ impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
#[inline]
fn $method(&mut self, other: u32) { fn $method(&mut self, other: u32) {
self.bits.$method(other); self.bits.$method(other);
} }
@ -277,56 +539,259 @@ impl_shift_operator!( Fixed, Shl, shl, Self );
impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign ); impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign );
impl_shift_operator!( Fixed, Shr, shr, Self ); impl_shift_operator!( Fixed, Shr, shr, Self );
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
#[allow(unused_macros)]
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn mul(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_mul_ $lhs _ $rhs>](other)
}
}
}
#[cfg(not(feature="deferred-division"))]
impl core::ops::Div<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn div(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
#[cfg(feature="deferred-division")]
impl ratio_ops::ratio::Divide<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn divide(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
}
}
// WIDE MUL: multiply into a wider type // WIDE MUL: multiply into a wider type
// let a = I32F32::ONE; // let a = I32F32::ONE;
// let b:I64F64 = a.wide_mul(a); // let b:I64F64 = a.wide_mul(a);
macro_rules! impl_wide_mul{ macro_rules! impl_wide_not_const_generic{
($lhs:expr,$rhs:expr)=>{ (
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}> impl Fixed<$lhs,{$lhs*32}>
{ {
paste::item!{ paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{ pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
Fixed::from_bits(self.bits.as_::<BInt<{$lhs+$rhs}>>()*rhs.bits.as_::<BInt<{$lhs+$rhs}>>()) let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>();
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs*rhs)
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>().shl($rhs*64);
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs/rhs)
} }
} }
} }
#[cfg(feature="wide-mul")]
impl_wide_operators!($lhs,$rhs);
}; };
} }
macro_rules! impl_wide_same_size_not_const_generic{
macro_rules! impl_wide_mul_all{ (
($(($x:expr, $y:expr)),*)=>{ (),
$( $width:expr
impl_wide_mul!($x, $y); )=>{
)* impl Fixed<$width,{$width*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $width _ $width>](self,rhs:Fixed<$width,{$width*32}>)->Fixed<{$width*2},{$width*2*32}>{
let (low,high)=self.bits.unsigned_abs().widening_mul(rhs.bits.unsigned_abs());
let out:BInt::<{$width*2}>=unsafe{core::mem::transmute([low,high])};
if self.is_negative()==rhs.is_negative(){
Fixed::from_bits(out)
}else{
// Normal neg is the cheapest negation operation
// And the inputs cannot reach the point where it matters
Fixed::from_bits(out.neg())
}
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $width _ $width>](self,rhs:Fixed<$width,{$width*32}>)->Fixed<{$width*2},{$width*2*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$width*2}>>().shl($width*64);
let rhs=rhs.bits.as_::<BInt<{$width*2}>>();
Fixed::from_bits(lhs/rhs)
}
}
}
#[cfg(feature="wide-mul")]
impl_wide_operators!($width,$width);
}; };
} }
//const generics sidestepped wahoo //const generics sidestepped wahoo
impl_wide_mul_all!( macro_repeated!(
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1), impl_wide_not_const_generic,(),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2), (2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3), (1,2), (3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4), (1,3),(2,3), (4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5), (1,4),(2,4),(3,4), (5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6), (1,5),(2,5),(3,5),(4,5), (6,5),(7,5),(8,5),(9,5),(10,5),(11,5),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7), (1,6),(2,6),(3,6),(4,6),(5,6), (7,6),(8,6),(9,6),(10,6),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8) (1,7),(2,7),(3,7),(4,7),(5,7),(6,7), (8,7),(9,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8), (9,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),
(1,11),(2,11),(3,11),(4,11),(5,11),
(1,12),(2,12),(3,12),(4,12),
(1,13),(2,13),(3,13),
(1,14),(2,14),
(1,15)
); );
impl<const SRC:usize,const F:usize> Fixed<SRC,F>{ macro_repeated!(
pub fn resize_into<const DST:usize>(self)->Fixed<DST,F>{ impl_wide_same_size_not_const_generic,(),
Fixed::from_bits(self.bits.as_::<BInt<DST>>()) 1,2,3,4,5,6,7,8
);
pub trait Fix<Out>{
fn fix(self)->Out;
}
macro_rules! impl_fix_rhs_lt_lhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
Fixed::from_bits(bnum::cast::As::as_::<BInt::<$rhs>>(self.bits.shr(($lhs-$rhs)*32)))
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
}
}
macro_rules! impl_fix_lhs_lt_rhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
Fixed::from_bits(bnum::cast::As::as_::<BInt::<$rhs>>(self.bits).shl(($rhs-$lhs)*32))
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
}
}
macro_rules! impl_fix_lhs_eq_rhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
self
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
} }
} }
macro_rules! impl_const{ // I LOVE NOT BEING ABLE TO USE CONST GENERICS
($n:expr)=>{
impl Fixed<{$n*2},{$n*2*32}>{ macro_repeated!(
pub fn halve_precision(self)->Fixed<$n,{$n*32}>{ impl_fix_rhs_lt_lhs_not_const_generic,(),
Fixed::from_bits(bnum::cast::As::as_(self.bits.shr($n*32))) (2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),(17,1),
} (3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2),
} (4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),
(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(13,4),(14,4),(15,4),(16,4),
(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),(12,5),(13,5),(14,5),(15,5),(16,5),
(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(13,6),(14,6),(15,6),(16,6),
(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),
(9,8),(10,8),(11,8),(12,8),(13,8),(14,8),(15,8),(16,8),
(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),
(11,10),(12,10),(13,10),(14,10),(15,10),(16,10),
(12,11),(13,11),(14,11),(15,11),(16,11),
(13,12),(14,12),(15,12),(16,12),
(14,13),(15,13),(16,13),
(15,14),(16,14),
(16,15)
);
macro_repeated!(
impl_fix_lhs_lt_rhs_not_const_generic,(),
(1,2),
(1,3),(2,3),
(1,4),(2,4),(3,4),
(1,5),(2,5),(3,5),(4,5),
(1,6),(2,6),(3,6),(4,6),(5,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),
(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11),
(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12),
(1,13),(2,13),(3,13),(4,13),(5,13),(6,13),(7,13),(8,13),(9,13),(10,13),(11,13),(12,13),
(1,14),(2,14),(3,14),(4,14),(5,14),(6,14),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14),
(1,15),(2,15),(3,15),(4,15),(5,15),(6,15),(7,15),(8,15),(9,15),(10,15),(11,15),(12,15),(13,15),(14,15),
(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),(11,16),(12,16),(13,16),(14,16),(15,16)
);
macro_repeated!(
impl_fix_lhs_eq_rhs_not_const_generic,(),
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(10,10),(11,11),(12,12),(13,13),(14,14),(15,15),(16,16)
);
macro_rules! impl_not_const_generic{
($n:expr,$_2n:expr)=>{
impl Fixed<$n,{$n*32}>{ impl Fixed<$n,{$n*32}>{
paste::item!{ paste::item!{
#[inline]
pub fn sqrt_unchecked(self)->Self{ pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self //1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift: //calculating max_shift:
@ -338,11 +803,15 @@ macro_rules! impl_const{
let max_shift=((used_bits>>1)+($n*32) as i32) as u32; let max_shift=((used_bits>>1)+($n*32) as i32) as u32;
let mut result=Self::ZERO; let mut result=Self::ZERO;
//multiply by one to make the types match (hack) //resize self to match the wide mul output
let wide_self=self.[<wide_mul_ $n _ $n>](Self::ONE); let wide_self=self.[<fix_ $_2n>]();
//descend down the bits and check if flipping each bit would push the square over the input value //descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){ for shift in (0..=max_shift).rev(){
let new_result=result|Self::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift))); let new_result={
let mut bits=result.to_bits().to_bits();
bits.set_bit(shift,true);
Self::from_bits(BInt::from_bits(bits))
};
if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{ if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{
result=new_result; result=new_result;
} }
@ -350,6 +819,7 @@ macro_rules! impl_const{
result result
} }
} }
#[inline]
pub fn sqrt(self)->Self{ pub fn sqrt(self)->Self{
if self<Self::ZERO{ if self<Self::ZERO{
panic!("Square root less than zero") panic!("Square root less than zero")
@ -357,6 +827,7 @@ macro_rules! impl_const{
self.sqrt_unchecked() self.sqrt_unchecked()
} }
} }
#[inline]
pub fn sqrt_checked(self)->Option<Self>{ pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{ if self<Self::ZERO{
None None
@ -367,11 +838,11 @@ macro_rules! impl_const{
} }
} }
} }
impl_const!(1); impl_not_const_generic!(1,2);
impl_const!(2); impl_not_const_generic!(2,4);
impl_const!(3); impl_not_const_generic!(3,6);
impl_const!(4); impl_not_const_generic!(4,8);
impl_const!(5); impl_not_const_generic!(5,10);
impl_const!(6); impl_not_const_generic!(6,12);
impl_const!(7); impl_not_const_generic!(7,14);
impl_const!(8); impl_not_const_generic!(8,16);

View File

@ -3,8 +3,6 @@ pub mod types;
#[cfg(feature="zeroes")] #[cfg(feature="zeroes")]
pub mod zeroes; pub mod zeroes;
#[cfg(feature="ratio")]
pub mod ratio;
#[cfg(test)] #[cfg(test)]
mod tests; mod tests;

View File

@ -1,10 +0,0 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub(crate)num:Num,
pub(crate)den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}

View File

@ -4,13 +4,96 @@ use crate::types::I256F256;
#[test] #[test]
fn you_can_add_numbers(){ fn you_can_add_numbers(){
let a=I256F256::from((3i128*2).pow(4)); let a=I256F256::from((3i128*2).pow(4));
assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2)) assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2));
}
#[test]
fn to_f32(){
let a=I256F256::from(1)>>2;
let f:f32=a.into();
assert_eq!(f,0.25f32);
let f:f32=(-a).into();
assert_eq!(f,-0.25f32);
let a=I256F256::from(0);
let f:f32=(-a).into();
assert_eq!(f,0f32);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f32=a.into();
assert_eq!(f,237946589723468975f32*2.0f32.powi(16));
}
#[test]
fn to_f64(){
let a=I256F256::from(1)>>2;
let f:f64=a.into();
assert_eq!(f,0.25f64);
let f:f64=(-a).into();
assert_eq!(f,-0.25f64);
let a=I256F256::from(0);
let f:f64=(-a).into();
assert_eq!(f,0f64);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f64=a.into();
assert_eq!(f,237946589723468975f64*2.0f64.powi(16));
}
#[test]
fn from_f32(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f32.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f32).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f32*2.0f32.powi(16)).try_into();
assert_eq!(b,Ok(a));
//I32F32::MAX into f32 is truncated into this value
let a=I32F32::raw(0b111111111111111111111111000000000000000000000000000000000000000i64);
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MAX).try_into();
assert_eq!(b,Ok(a));
//I32F32::MIN hits a special case since it's not representable as a positive signed integer
//TODO: don't return an overflow because this is technically possible
let a=I32F32::MIN;
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MIN).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
//16 is within the 24 bits of float precision
let b:Result<I32F32,_>=Into::<f32>::into(-I32F32::MIN.fix_2()).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
let b:Result<I32F32,_>=f32::MIN_POSITIVE.try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Underflow));
//test many cases
for i in 0..64{
let a=crate::fixed::Fixed::<2,64>::raw_digit(0b111111111111111111111111000000000000000000000000000000000000000i64)<<i;
let f:f32=a.into();
let b:Result<crate::fixed::Fixed<2,64>,_>=f.try_into();
assert_eq!(b,Ok(a));
}
}
#[test]
fn from_f64(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f64.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f64).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f64*2.0f64.powi(16)).try_into();
assert_eq!(b,Ok(a));
} }
#[test] #[test]
fn you_can_shr_numbers(){ fn you_can_shr_numbers(){
let a=I32F32::from(4); let a=I32F32::from(4);
assert_eq!(a>>1,I32F32::from(2)) assert_eq!(a>>1,I32F32::from(2));
} }
#[test] #[test]
@ -20,6 +103,20 @@ fn test_wide_mul(){
assert_eq!(aa,crate::types::I64F64::ONE); assert_eq!(aa,crate::types::I64F64::ONE);
} }
#[test]
fn test_wide_div(){
let a=I32F32::ONE*4;
let b=I32F32::ONE*2;
let wide_a=a.wide_mul_1_1(I32F32::ONE);
let wide_b=b.wide_mul_1_1(I32F32::ONE);
let ab=a.wide_div_1_1(b);
assert_eq!(ab,crate::types::I64F64::ONE*2);
let wab=wide_a.wide_div_2_1(b);
assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2);
let awb=a.wide_div_1_2(wide_b);
assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2);
}
#[test] #[test]
fn test_wide_mul_repeated() { fn test_wide_mul_repeated() {
let a=I32F32::from(2); let a=I32F32::from(2);
@ -38,6 +135,13 @@ fn test_bint(){
assert_eq!(a*2,I32F32::from(2)); assert_eq!(a*2,I32F32::from(2));
} }
#[test]
fn test_fix(){
assert_eq!(I32F32::ONE.fix_8(),I256F256::ONE);
assert_eq!(I32F32::ONE,I256F256::ONE.fix_1());
assert_eq!(I32F32::NEG_ONE.fix_8(),I256F256::NEG_ONE);
assert_eq!(I32F32::NEG_ONE,I256F256::NEG_ONE.fix_1());
}
#[test] #[test]
fn test_sqrt(){ fn test_sqrt(){
let a=I32F32::ONE*4; let a=I32F32::ONE*4;
@ -51,7 +155,7 @@ fn test_sqrt_zero(){
#[test] #[test]
fn test_sqrt_low(){ fn test_sqrt_low(){
let a=I32F32::HALF; let a=I32F32::HALF;
let b=a*a; let b=a.fixed_mul(a);
assert_eq!(b.sqrt(),a); assert_eq!(b.sqrt(),a);
} }
fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{ fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{
@ -88,3 +192,27 @@ fn test_sqrt_max(){
let a=I32F32::MAX; let a=I32F32::MAX;
test_exact(a); test_exact(a);
} }
#[test]
#[cfg(all(feature="zeroes",not(feature="deferred-division")))]
fn test_zeroes_normal(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE,I32F32::ONE]));
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE*3,I32F32::ONE*2,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE*3,I32F32::ONE]));
}
#[test]
#[cfg(all(feature="zeroes",feature="deferred-division"))]
fn test_zeroes_deferred_division(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(
zeroes,
arrayvec::ArrayVec::from_iter([
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::NEG_ONE*2),
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::ONE*2),
])
);
}

View File

@ -1,5 +1,4 @@
use crate::fixed::Fixed; use crate::fixed::Fixed;
use crate::ratio::Ratio;
use arrayvec::ArrayVec; use arrayvec::ArrayVec;
use std::cmp::Ordering; use std::cmp::Ordering;
@ -7,36 +6,37 @@ macro_rules! impl_zeroes{
($n:expr)=>{ ($n:expr)=>{
impl Fixed<$n,{$n*32}>{ impl Fixed<$n,{$n*32}>{
#[inline] #[inline]
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<Ratio<Self,Self>,2>{ pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<<Self as core::ops::Div>::Output,2>{
let a2pos=match a2.cmp(&Self::ZERO){ let a2pos=match a2.cmp(&Self::ZERO){
Ordering::Greater=>true, Ordering::Greater=>true,
Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()), Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()),
Ordering::Less=>true, Ordering::Less=>false,
}; };
paste::item!{ let radicand=a1*a1-a2*a0*4;
let radicand=a1.[<wide_mul_ $n _ $n>](a1)-a2.[<wide_mul_ $n _ $n>](a0)*4; match radicand.cmp(&<Self as core::ops::Mul>::Output::ZERO){
}
match radicand.cmp(&Fixed::<{$n*2},{$n*2*32}>::ZERO){
Ordering::Greater=>{ Ordering::Greater=>{
let planar_radicand=radicand.sqrt().halve_precision(); paste::item!{
//sort roots ascending and avoid taking the difference of large numbers let planar_radicand=radicand.sqrt().[<fix_ $n>]();
match (a2pos,Self::ZERO<a1){
(true, true )=>[Ratio::new(-a1-planar_radicand,a2*2),Ratio::new(a0*2,-a1-planar_radicand)].into(),
(true, false)=>[Ratio::new(a0*2,-a1+planar_radicand),Ratio::new(-a1+planar_radicand,a2*2)].into(),
(false,true )=>[Ratio::new(a0*2,-a1-planar_radicand),Ratio::new(-a1-planar_radicand,a2*2)].into(),
(false,false)=>[Ratio::new(-a1+planar_radicand,a2*2),Ratio::new(a0*2,-a1+planar_radicand)].into(),
} }
//sort roots ascending and avoid taking the difference of large numbers
let zeroes=match (a2pos,Self::ZERO<a1){
(true, true )=>[(-a1-planar_radicand)/(a2*2),(a0*2)/(-a1-planar_radicand)],
(true, false)=>[(a0*2)/(-a1+planar_radicand),(-a1+planar_radicand)/(a2*2)],
(false,true )=>[(a0*2)/(-a1-planar_radicand),(-a1-planar_radicand)/(a2*2)],
(false,false)=>[(-a1+planar_radicand)/(a2*2),(a0*2)/(-a1+planar_radicand)],
};
ArrayVec::from_iter(zeroes)
}, },
Ordering::Equal=>ArrayVec::from_iter([Ratio::new(a1,a2*-2)]), Ordering::Equal=>ArrayVec::from_iter([(a1)/(a2*-2)]),
Ordering::Less=>ArrayVec::new_const(), Ordering::Less=>ArrayVec::new_const(),
} }
} }
#[inline] #[inline]
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<Ratio<Self,Self>,1>{ pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<<Self as core::ops::Div>::Output,1>{
if a1==Self::ZERO{ if a1==Self::ZERO{
ArrayVec::new_const() ArrayVec::new_const()
}else{ }else{
ArrayVec::from_iter([Ratio::new(-a0,a1)]) ArrayVec::from_iter([(-a0)/(a1)])
} }
} }
} }

View File

@ -1,12 +0,0 @@
[package]
name = "fixed_wide_vectors"
version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide"]
fixed_wide=["dep:fixed_wide"]
[dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", optional = true }
paste = "1.0.15"

View File

@ -1,14 +0,0 @@
mod macros;
mod vector;
mod matrix;
pub use vector::Vector2;
pub use vector::Vector3;
pub use vector::Vector4;
pub use matrix::Matrix2;
pub use matrix::Matrix3;
pub use matrix::Matrix4;
#[cfg(test)]
mod tests;

View File

@ -1,138 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_common {
( $struct: ident { $($field: ident), + }, $size: expr ) => {
impl<T> $struct<T> {
/// Constructs a new vector with the specified values for each field.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(0, 0);
///
/// assert_eq!(vec2.x, 0);
/// assert_eq!(vec2.y, 0);
/// ```
#[inline(always)]
pub const fn new( $($field: T), + ) -> Self {
Self {
$( $field ), +
}
}
/// Consumes the vector and returns its values as an array.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(0, 0);
/// let array = vec2.to_array();
///
/// assert_eq!(array, [0, 0]);
/// ```
#[inline(always)]
pub fn to_array(self) -> [T; $size] {
[ $(self.$field), + ]
}
/// Consumes the vector and returns a new vector with the given function applied on each field.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(1, 2)
/// .map(|i| i * 2);
///
/// assert_eq!(vec2, Vector2::new(2, 4));
/// ```
#[inline]
pub fn map<F, U>(self, f: F) -> $struct<U>
where
F: Fn(T) -> U
{
$struct {
$( $field: f(self.$field) ), +
}
}
}
impl<T: Copy> $struct<T> {
/// Constructs a vector using the given `value` as the value for all of its fields.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::from_value(0);
///
/// assert_eq!(vec2, Vector2::new(0, 0));
/// ```
#[inline(always)]
pub const fn from_value(value: T) -> Self {
Self {
$( $field: value ), +
}
}
}
impl<T> From<[T; $size]> for $struct<T> {
fn from(from: [T; $size]) -> Self {
let mut iterator = from.into_iter();
Self {
// SAFETY: We know the size of `from` so `iterator.next()` is always `Some(..)`
$( $field: unsafe { iterator.next().unwrap_unchecked() } ), +
}
}
}
impl<T: core::fmt::Debug> core::fmt::Debug for $struct<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let identifier = core::stringify!($struct);
f.debug_struct(identifier)
$( .field( core::stringify!($field), &self.$field ) ) +
.finish()
}
}
impl<T: PartialEq> PartialEq for $struct<T> {
fn eq(&self, other: &Self) -> bool {
$( self.$field == other.$field ) && +
}
}
impl<T: Eq> Eq for $struct<T> { }
impl<T: core::hash::Hash> core::hash::Hash for $struct<T> {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
$( self.$field.hash(state); ) +
}
}
impl<T: Clone> Clone for $struct<T> {
fn clone(&self) -> Self {
Self {
$( $field: self.$field.clone() ), +
}
}
}
impl<T: Copy> Copy for $struct<T> { }
impl<T: Default> Default for $struct<T> {
fn default() -> Self {
Self {
$( $field: T::default() ), +
}
}
}
}
}

View File

@ -1,198 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_2arg_not_const_generic {
(
($struct: ident { $($field: ident), + }, $size: expr),
($lhs:expr, $rhs:expr)
) => {
impl $struct<fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:$struct<fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->$struct<fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
$struct{
$( $field: self.$field.[<wide_mul_ $lhs _ $rhs>](rhs.$field) ), +
}
}
#[inline]
pub fn [<wide_dot_ $lhs _ $rhs>](self,rhs:$struct<fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
$crate::sum_repeating!(
$( + (self.$field.[<wide_mul_ $lhs _ $rhs>](rhs.$field)) ) +
)
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_1arg_not_const_generic {
(
($struct: ident { $($field: ident), + }, $size: expr),
$n:expr
) => {
impl $struct<fixed_wide::fixed::Fixed<{$n},{$n*32}>>{
paste::item!{
#[inline]
pub fn wide_length_squared(&self)->fixed_wide::fixed::Fixed<{$n*2},{$n*2*32}>{
$crate::sum_repeating!(
$( + self.$field.[<wide_mul_ $n _ $n>](self.$field) ) +
)
}
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8x8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any,
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any, 1,2,3,4,5,6,7,8);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations {
( $struct: ident { $($field: ident), + }, $size: expr ) => {
$crate::do_macro_8!(impl_wide_vector_operations_1arg_not_const_generic,($struct { $($field), + }, $size));
$crate::do_macro_8x8!(impl_wide_vector_operations_2arg_not_const_generic,($struct { $($field), + }, $size));
};
}
// Notes:
// Mat3<Vec2>.dot(Vec2) -> Vec3
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
// mat.mat can be implemented off the back of mat.vec
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_mul {
(
//TODO: Fixed point impls
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr),
($struct_inner: ident { $($field_inner: ident), + }, $matrix_inner: ident { $($matrix_field_inner: ident), + }, $size_inner: expr),
($rhs_struct_inner: ident { $($rhs_field_inner: ident), + }, $rhs_matrix_inner: ident { $($rhs_matrix_field_inner: ident), + }, $rhs_size_inner: expr),
($lhs: expr, $rhs: expr)
) => {
impl $struct_outer<$struct_inner<fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>>{
paste::item!{
#[inline]
pub fn [<wide_dot_ $size_outer x $size_inner _ $size_inner x $rhs_size_inner _ $lhs _ $rhs>](self,rhs:$matrix_inner<$rhs_struct_inner<fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>>)->$struct_outer<$rhs_struct_inner<fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>>{
//just made this up, don't trust it
let tr=rhs.transpose();
//TODO: use a macro expansion instead of transpose and map
self.map(|axis|
tr.map(|trax|
axis.[<wide_dot_ $lhs _ $rhs>](trax)
).to_vector()
)
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_mul_shim {
(
($outer_info:tt,$inner_info:tt,$rhs_info:tt),
($lhs: expr, $rhs: expr)
) => {
$crate::impl_matrix_wide_mul!($outer_info,$inner_info,$rhs_info,($lhs,$rhs));
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_mul_8x8 {
(
($outer_info:tt,$inner_info:tt),
$rhs_info:tt
) => {
$crate::do_macro_8x8!(impl_matrix_wide_mul_shim,($outer_info,$inner_info,$rhs_info));
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_mul_repeat_rhs {
(
($outer_info:tt,($($rhs_info:tt),+)),
$inner_info:tt
) => {
$crate::macro_repeated!(impl_matrix_wide_mul_8x8,($outer_info,$inner_info),$($rhs_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_matrix_operations_2arg_not_const_generic {
(
$lhs: expr, $rhs: expr,
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr),
($struct_inner: ident { $($field_inner: ident), + }, $matrix_inner: ident { $($matrix_field_inner: ident), + }, $size_inner: expr)
) => {
/* TODO: nasty determinant macro
impl<U:std::ops::Add<Output=U>,T:Copy+fixed_wide_traits::wide::WideMul<Output=U>> $struct<T> {
#[inline]
pub fn wide_dot(&self) -> U {
$crate::sum_repeating!(
$( + self.$field.wide_mul(self.$field) ) +
)
}
}
*/
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_matrix_operations_1arg_not_const_generic {
(
$n: expr,
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr),
) => {
/* TODO: nasty determinant macro
impl<U:std::ops::Add<Output=U>,T:Copy+fixed_wide_traits::wide::WideMul<Output=U>> $struct<T> {
#[inline]
pub fn wide_det(&self) -> U {
$crate::sum_repeating!(
$( + self.$field.wide_mul(self.$field) ) +
)
}
}
*/
};
}
// HACK: Allows us to sum repeating tokens in macros.
// See: https://stackoverflow.com/a/60187870/17452730
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! sum_repeating {
( + $($item: tt) * ) => {
$($item) *
};
}

View File

@ -1,192 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
(
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr)
) => {
$crate::impl_common!($struct_outer { $($field_outer), + }, $size_outer);
impl<U> $struct_outer<U> {
#[inline(always)]
pub fn to_vector(self) -> $vector_outer<U> {
$vector_outer {
$(
$vector_field_outer: self.$field_outer
), +
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_shim {
(
(),
$matrix_info:tt
) => {
$crate::impl_matrix!($matrix_info);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrices {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_shim,(),$($matrix_info),+);
$crate::macro_repeated!(impl_matrix_inner_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_inner_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_inner,$matrix_info,$($vector_info),+);
#[cfg(feature="fixed_wide")]
$crate::macro_repeated!(impl_matrix_wide_mul_repeat_rhs,($matrix_info,($($vector_info),+)),$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_inner {
(
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr),
($struct_inner: ident { $($field_inner: ident), + }, $matrix_inner: ident { $($matrix_field_inner: ident), + }, $size_inner: expr)
) => {
impl<T> $struct_outer<$struct_inner<T>> {
#[inline(always)]
pub fn to_array_2d(self) -> [[T; $size_inner]; $size_outer] {
[ $(self.$field_outer.to_array()), + ]
}
#[inline]
pub fn map_2d<F, U>(self, f: F) -> $struct_outer<$struct_inner<U>>
where
F: Fn(T) -> U
{
$crate::matrix_map2d_outer!{f,self,($struct_outer { $($field_outer), + }),($struct_inner { $($field_inner), + })}
}
#[inline]
pub fn transpose(self) -> $matrix_inner<$vector_outer<T>>{
$crate::matrix_transpose_outer!{self,
($matrix_inner { $($matrix_field_inner), + }),($struct_inner { $($field_inner), + }),
($vector_outer { $($vector_field_outer), + }),($struct_outer { $($field_outer), + })
}
}
}
impl<T: Copy> $struct_outer<$struct_inner<T>> {
#[inline(always)]
pub const fn from_value_2d(value: T) -> Self {
Self {
$( $field_outer: $struct_inner::from_value(value) ), +
}
}
//TODO: diagonal
}
// Impl floating-point based methods
//#[cfg(feature="fixed_wide_traits")]
//$crate::impl_wide_matrix_operations!( ($struct_outer { $($field_outer), + }, $size_outer), ($struct_inner, $size_inner), $fields_inner );
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_map2d_outer {
( $f:ident, $value:ident, ($struct_outer: ident { $($field_outer: ident), + }), $unparsed_inner:tt ) => {
$struct_outer {
$(
$field_outer: $crate::matrix_map2d_inner!{$f,$value,$field_outer,$unparsed_inner}
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_map2d_inner {
( $f:ident, $value:ident, $field_outer:ident, ($struct_inner: ident { $($field_inner: ident), + }) ) => {
$struct_inner {
$(
$field_inner: $f($value.$field_outer.$field_inner)
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_transpose_outer {
(
$value:ident,
($struct_outer: ident { $($field_outer: ident), + }),
($old_outer: ident { $($old_field_outer: ident), + }),
$fields_inner:tt,
$old_fields_inner:tt
) => {
$struct_outer {
$(
$field_outer: $crate::matrix_transpose_inner!{$value,$old_field_outer,$fields_inner,$old_fields_inner}
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_transpose_inner {
( $value:ident, $field_outer:ident,
($struct_inner: ident { $($field_inner: ident), + }),
($old_struct_inner: ident { $($old_field_inner: ident), + })
) => {
$struct_inner {
$(
$field_inner: $value.$old_field_inner.$field_outer
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_operator {
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident, $output: ty ) => {
impl<T:core::ops::$trait<Output=T>> core::ops::$trait for $struct<T> {
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
Self {
$( $field: self.$field.$method(other.$field) ), +
}
}
}
impl<T:core::ops::$trait<Output=T>+Copy> core::ops::$trait<T> for $struct<T>{
type Output = $output;
fn $method(self, other: T) -> Self::Output {
$struct {
$( $field: self.$field.$method(other) ), +
}
}
}
};
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident ) => {
impl<T: core::ops::$trait> core::ops::$trait for $struct<T> {
fn $method(&mut self, other: Self) {
$( self.$field.$method(other.$field) ); +
}
}
impl<T: core::ops::$trait + Copy> core::ops::$trait<T> for $struct<T> {
fn $method(&mut self, other: T) {
$( self.$field.$method(other) ); +
}
}
};
}

View File

@ -1,146 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
( $struct: ident { $($field: ident), + }, $size: expr ) => {
$crate::impl_common!($struct { $($field), + }, $size);
impl<T: Ord> $struct<T> {
pub fn min(self, rhs: Self) -> $struct<T> {
$struct{
$( $field: self.$field.min(rhs.$field) ), +
}
}
pub fn max(self, rhs: Self) -> $struct<T> {
$struct{
$( $field: self.$field.max(rhs.$field) ), +
}
}
pub fn cmp(self, rhs: Self) -> $struct<core::cmp::Ordering> {
$struct{
$( $field: self.$field.cmp(&rhs.$field) ), +
}
}
pub fn lt(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.lt(&rhs.$field) ), +
}
}
pub fn gt(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.gt(&rhs.$field) ), +
}
}
pub fn ge(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.ge(&rhs.$field) ), +
}
}
pub fn le(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.le(&rhs.$field) ), +
}
}
}
impl $struct<bool>{
pub fn all(&self)->bool{
const ALL:[bool;$size]=[true;$size];
core::matches!(self.to_array(),ALL)
}
pub fn any(&self)->bool{
$( self.$field )|| +
}
}
impl<T: core::ops::Neg<Output = T>> core::ops::Neg for $struct<T> {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
$( $field: -self.$field ), +
}
}
}
// Impl arithmetic pperators
$crate::impl_vector_operator!( $struct { $($field), + }, AddAssign, add_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Add, add, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, SubAssign, sub_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Sub, sub, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, MulAssign, mul_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Mul, mul, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, DivAssign, div_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Div, div, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, RemAssign, rem_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Rem, rem, Self );
// Impl bitwise operators
$crate::impl_vector_operator!( $struct { $($field), + }, BitAndAssign, bitand_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitAnd, bitand, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, BitOrAssign, bitor_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitOr, bitor, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitXor, bitxor, Self );
// Impl floating-point based methods
#[cfg(feature="fixed_wide")]
$crate::impl_wide_vector_operations!( $struct { $($field), + }, $size );
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_extend {
( $struct: ident { $($field: ident), + }, $struct_extended: ident, $field_extended: ident ) => {
impl<T> $struct<T> {
#[inline(always)]
pub fn extend(self,value:T) -> $struct_extended<T> {
$struct_extended {
$( $field:self.$field, ) +
$field_extended:value
}
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident, $output: ty ) => {
impl<T:core::ops::$trait<Output=T>> core::ops::$trait for $struct<T> {
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
Self {
$( $field: self.$field.$method(other.$field) ), +
}
}
}
impl<T:core::ops::$trait<Output=T>+Copy> core::ops::$trait<T> for $struct<T>{
type Output = $output;
fn $method(self, other: T) -> Self::Output {
$struct {
$( $field: self.$field.$method(other) ), +
}
}
}
};
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident ) => {
impl<T: core::ops::$trait> core::ops::$trait for $struct<T> {
fn $method(&mut self, other: Self) {
$( self.$field.$method(other.$field) ); +
}
}
impl<T: core::ops::$trait + Copy> core::ops::$trait<T> for $struct<T> {
fn $method(&mut self, other: T) {
$( self.$field.$method(other) ); +
}
}
};
}

View File

@ -1,36 +0,0 @@
use crate::{Vector2,Vector3,Vector4};
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_extend!(Matrix2 { x_axis, y_axis }, Matrix3, z_axis);
crate::impl_extend!(Matrix3 { x_axis, y_axis, z_axis }, Matrix4, w_axis);
//TODO: extend vertically
crate::impl_matrices!(
//outer struct and equivalent vector
(
(Matrix2 { x_axis, y_axis }, Vector2 { x, y }, 2),
(Matrix3 { x_axis, y_axis, z_axis }, Vector3 { x, y, z }, 3),
(Matrix4 { x_axis, y_axis, z_axis, w_axis }, Vector4 { x, y, z, w }, 4)
),
//inner struct and equivalent matrix
(
(Vector2 { x, y }, Matrix2 { x_axis, y_axis }, 2),
(Vector3 { x, y, z }, Matrix3 { x_axis, y_axis, z_axis }, 3),
(Vector4 { x, y, z, w }, Matrix4 { x_axis, y_axis, z_axis, w_axis }, 4)
)
);

View File

@ -1,63 +0,0 @@
use crate::{Vector2,Vector3,Vector4,Matrix3,Matrix4};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_mul_4_4(v2);
assert_eq!(v3,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))));
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_dot_4_4(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_matrix_dot(){
let lhs=Matrix3::from([
Vector4::from([Planar64::from(1),Planar64::from(2),Planar64::from(3),Planar64::from(4)]),
Vector4::from([Planar64::from(5),Planar64::from(6),Planar64::from(7),Planar64::from(8)]),
Vector4::from([Planar64::from(9),Planar64::from(10),Planar64::from(11),Planar64::from(12)]),
]);
let rhs=Matrix4::from([
Vector2::from([Planar64::from(1),Planar64::from(2)]),
Vector2::from([Planar64::from(3),Planar64::from(4)]),
Vector2::from([Planar64::from(5),Planar64::from(6)]),
Vector2::from([Planar64::from(7),Planar64::from(8)]),
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs.wide_dot_3x4_4x2_1_1(rhs);
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot,
Matrix3::from([
Vector2::from([Planar64Wide1::from(50),Planar64Wide1::from(60)]),
Vector2::from([Planar64Wide1::from(114),Planar64Wide1::from(140)]),
Vector2::from([Planar64Wide1::from(178),Planar64Wide1::from(220)]),
])
);
}

View File

@ -1,5 +0,0 @@
mod tests;
#[cfg(feature="fixed_wide")]
mod fixed_wide;

View File

@ -1,81 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
/// Vector for holding two-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let mut vec2 = Vector2::new(1, 2);
/// vec2 += Vector2::new(1, 2);
///
/// assert_eq!(vec2.x, 2);
/// assert_eq!(vec2.y, 4);
/// ```
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
/// Vector for holding three-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector3;
///
/// let mut vec3 = Vector3::new(1, 2, 3);
/// vec3 += Vector3::new(1, 2, 3);
///
/// assert_eq!(vec3.x, 2);
/// assert_eq!(vec3.y, 4);
/// assert_eq!(vec3.z, 6);
/// ```
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
/// Vector for holding four-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector4;
///
/// let mut vec4 = Vector4::new(1, 2, 3, 4);
/// vec4 += Vector4::new(1, 2, 3, 4);
///
/// assert_eq!(vec4.x, 2);
/// assert_eq!(vec4.y, 4);
/// assert_eq!(vec4.z, 6);
/// assert_eq!(vec4.w, 8);
/// ```
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector!(Vector2 { x, y }, 2);
crate::impl_vector!(Vector3 { x, y, z }, 3);
crate::impl_vector!(Vector4 { x, y, z, w }, 4);
crate::impl_extend!(Vector2 { x, y }, Vector3, z);
crate::impl_extend!(Vector3 { x, y, z }, Vector4, w);
crate::impl_matrix_inner!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector2 { x, y }, Vector2 { x, y }, 2) );
crate::impl_matrix_inner!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3) );
crate::impl_matrix_inner!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4) );
crate::impl_matrix_inner!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector2 { x, y }, Vector2 { x, y }, 2) );
crate::impl_matrix_inner!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3) );
crate::impl_matrix_inner!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4) );
crate::impl_matrix_inner!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector2 { x, y }, Vector2 { x, y }, 2) );
crate::impl_matrix_inner!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3) );
crate::impl_matrix_inner!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4) );

View File

@ -2,33 +2,27 @@
# It is not intended for manual editing. # It is not intended for manual editing.
version = 3 version = 3
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]] [[package]]
name = "bnum" name = "bnum"
version = "0.11.0" version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790" checksum = "50202def95bf36cb7d1d7a7962cea1c36a3f8ad42425e5d2b71d7acb8041b5b8"
[[package]] [[package]]
name = "fixed_wide" name = "fixed_wide"
version = "0.1.0" version = "0.1.1"
dependencies = [ dependencies = [
"arrayvec",
"bnum", "bnum",
"paste", "paste",
] ]
[[package]] [[package]]
name = "fixed_wide_vectors" name = "linear_ops"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"fixed_wide", "fixed_wide",
"paste", "paste",
"ratio_ops",
] ]
[[package]] [[package]]
@ -36,3 +30,7 @@ name = "paste"
version = "1.0.15" version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a" checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

22
linear_ops/Cargo.toml Normal file
View File

@ -0,0 +1,22 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Vector/Matrix operations using trait bounds."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[features]
default=["named-fields","fixed-wide"]
named-fields=[]
fixed-wide=["dep:fixed_wide","dep:paste"]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { version = "0.1.0", path = "../ratio_ops", registry = "strafesnet", optional = true }
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", optional = true }
paste = { version = "1.0.15", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", features = ["wide-mul"] }

176
linear_ops/LICENSE-APACHE Normal file
View File

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

23
linear_ops/LICENSE-MIT Normal file
View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

10
linear_ops/src/lib.rs Normal file
View File

@ -0,0 +1,10 @@
mod macros;
pub mod types;
pub mod vector;
pub mod matrix;
#[cfg(feature="named-fields")]
mod named;
#[cfg(test)]
mod tests;

View File

@ -0,0 +1,79 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector_not_const_generic {
(
(),
$n:expr
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
#[inline]
pub fn length(self)-><fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output{
self.length_squared().sqrt_unchecked()
}
#[inline]
pub fn with_length<U,V>(self,length:U)-><Vector<N,V> as core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>>::Output
where
fixed_wide::fixed::Fixed<$n,{$n*32}>:core::ops::Mul<U,Output=V>,
U:Copy,
V:core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>,
{
self*length/self.length()
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_4 {
( $macro: ident, $any:tt ) => {
$crate::macro_repeated!($macro,$any,1,2,3,4);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector {
() => {
$crate::macro_4!(impl_fixed_wide_vector_not_const_generic,());
// I LOVE NOT BEING ABLE TO USE CONST GENERICS
$crate::macro_repeated!(
impl_fix_not_const_generic,(),
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(13,4),(14,4),(15,4),(16,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),(12,5),(13,5),(14,5),(15,5),(16,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(13,6),(14,6),(15,6),(16,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8),(9,8),(10,8),(11,8),(12,8),(13,8),(14,8),(15,8),(16,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),(9,9),(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),(10,10),(11,10),(12,10),(13,10),(14,10),(15,10),(16,10),
(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11),(11,11),(12,11),(13,11),(14,11),(15,11),(16,11),
(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12),(12,12),(13,12),(14,12),(15,12),(16,12),
(1,13),(2,13),(3,13),(4,13),(5,13),(6,13),(7,13),(8,13),(9,13),(10,13),(11,13),(12,13),(13,13),(14,13),(15,13),(16,13),
(1,14),(2,14),(3,14),(4,14),(5,14),(6,14),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14),(14,14),(15,14),(16,14),
(1,15),(2,15),(3,15),(4,15),(5,15),(6,15),(7,15),(8,15),(9,15),(10,15),(11,15),(12,15),(13,15),(14,15),(15,15),(16,15),
(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),(11,16),(12,16),(13,16),(14,16),(15,16),(16,16)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fix_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$lhs,{$lhs*32}>>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Vector<N,fixed_wide::fixed::Fixed<$rhs,{$rhs*32}>>{
self.map(|t|t.[<fix_ $rhs>]())
}
}
}
}
}

View File

@ -0,0 +1,272 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;Y];X])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;Y];X]{
self.array
}
#[inline]
pub fn from_cols(cols:[Vector<Y,T>;X])->Self
{
Matrix::new(
cols.map(|col|col.array),
)
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// old (list of rows) MatY<VecX>.MatX<VecZ> = MatY<VecZ>
// new (list of columns) MatX<VecY>.MatZ<VecX> = MatZ<VecY>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter().cycle());
Matrix{
array:rhs.array.map(|rhs_axis|
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs_axis.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
#[inline]
// MatX<VecY>.VecY = VecX
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Vector::new(
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs.array.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;Y];X])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for col in &self.array[0..X]{
core::write!(f,"\n")?;
for elem in &col[0..Y-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",col.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}

View File

@ -1,10 +1,10 @@
#[cfg(feature="fixed_wide")]
pub mod fixed_wide;
pub mod common; pub mod common;
pub mod vector; pub mod vector;
pub mod matrix; pub mod matrix;
#[cfg(feature="fixed-wide")]
pub mod fixed_wide;
#[doc(hidden)] #[doc(hidden)]
#[macro_export(local_inner_macros)] #[macro_export(local_inner_macros)]
macro_rules! macro_repeated{ macro_rules! macro_repeated{

View File

@ -0,0 +1,357 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
// dedicated methods for this type
#[cfg(feature="fixed-wide")]
$crate::impl_fixed_wide_vector!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_extend {
( $size: expr ) => {
impl<T> Vector<$size,T>{
#[inline]
pub fn extend(self,value:T)->Vector<{$size+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value));
Vector::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
}
}

17
linear_ops/src/matrix.rs Normal file
View File

@ -0,0 +1,17 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;Y];X],
}
crate::impl_matrix!();
crate::impl_matrix_extend!(2,2);
crate::impl_matrix_extend!(2,3);
crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

59
linear_ops/src/named.rs Normal file
View File

@ -0,0 +1,59 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
#[repr(C)]
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
#[repr(C)]
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
#[repr(C)]
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector_named_fields!(Vector2, 2);
crate::impl_vector_named_fields!(Vector3, 3);
crate::impl_vector_named_fields!(Vector4, 4);
#[repr(C)]
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
#[repr(C)]
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
#[repr(C)]
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_matrix_named_fields!(
//outer struct
(
(Matrix2, 2),
(Matrix3, 3),
(Matrix4, 4)
),
//inner struct
(
(2),
(3),
(4)
)
);

View File

@ -0,0 +1,96 @@
use crate::types::{Matrix3,Matrix3x2,Matrix3x4,Matrix4x2,Vector3};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_matrix_dot(){
let lhs=Matrix3x4::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6),Planar64::from(7),Planar64::from(8)],
[Planar64::from(9),Planar64::from(10),Planar64::from(11),Planar64::from(12)],
]).transpose();
let rhs=Matrix4x2::new([
[Planar64::from(1),Planar64::from(2)],
[Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6)],
[Planar64::from(7),Planar64::from(8)],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[Planar64Wide1::from(50),Planar64Wide1::from(60)],
[Planar64Wide1::from(114),Planar64Wide1::from(140)],
[Planar64Wide1::from(178),Planar64Wide1::from(220)],
]).transpose().array
);
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.adjugate().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],
[Planar64Wide1::from(2),Planar64Wide1::from(4),Planar64Wide1::from(-3)],
]).array
);
}

View File

@ -0,0 +1,6 @@
mod tests;
#[cfg(feature="named-fields")]
mod named;
mod fixed_wide;

View File

@ -0,0 +1,30 @@
use crate::types::{Vector3,Matrix3};
#[test]
fn test_vector(){
let mut v=Vector3::new([1,2,3]);
assert_eq!(v.x,1);
assert_eq!(v.y,2);
assert_eq!(v.z,3);
v.x=5;
assert_eq!(v.x,5);
v.y*=v.x;
assert_eq!(v.y,10);
}
#[test]
fn test_matrix(){
let mut v=Matrix3::from_value(2);
assert_eq!(v.x_axis.x,2);
assert_eq!(v.y_axis.y,2);
assert_eq!(v.z_axis.z,2);
v.x_axis.x=5;
assert_eq!(v.x_axis.x,5);
v.y_axis.z*=v.x_axis.x;
assert_eq!(v.y_axis.z,10);
}

View File

@ -0,0 +1,59 @@
use crate::types::{Vector2,Vector3,Matrix3x4,Matrix4x2,Matrix3x2,Matrix2x3};
#[test]
fn test_bool(){
assert_eq!(Vector3::new([false,false,false]).any(),false);
assert_eq!(Vector3::new([false,false,true]).any(),true);
assert_eq!(Vector3::new([false,false,true]).all(),false);
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix2x3::new([
[1,2,3],
[4,5,6],
]).transpose();
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
// All this code was written row major and I converted the lib to colum major
let rhs=Matrix4x2::new([
[ 1.0, 2.0],
[ 3.0, 4.0],
[ 5.0, 6.0],
[ 7.0, 8.0],
]).transpose(); // | | |
let lhs=Matrix3x4::new([ // | | |
[1.0, 2.0, 3.0, 4.0],// [ 50.0, 60.0],
[5.0, 6.0, 7.0, 8.0],// [114.0,140.0],
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[50.0,60.0],
[114.0,140.0],
[178.0,220.0],
]).transpose().array
);
}

18
linear_ops/src/types.rs Normal file
View File

@ -0,0 +1,18 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
pub type Vector2<T>=Vector<2,T>;
pub type Vector3<T>=Vector<3,T>;
pub type Vector4<T>=Vector<4,T>;
pub type Matrix2<T>=Matrix<2,2,T>;
pub type Matrix2x3<T>=Matrix<2,3,T>;
pub type Matrix2x4<T>=Matrix<2,4,T>;
pub type Matrix3x2<T>=Matrix<3,2,T>;
pub type Matrix3<T>=Matrix<3,3,T>;
pub type Matrix3x4<T>=Matrix<3,4,T>;
pub type Matrix4x2<T>=Matrix<4,2,T>;
pub type Matrix4x3<T>=Matrix<4,3,T>;
pub type Matrix4<T>=Matrix<4,4,T>;

19
linear_ops/src/vector.rs Normal file
View File

@ -0,0 +1,19 @@
/// An array-backed vector type. Named fields are made accessible via the Deref/DerefMut traits which are implmented for 2-4 dimensions.
/// let mut v = Vector::new([1.0,2.0,3.0]);
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
// Needs const generics for generic case
crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();

1
ratio_ops/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

7
ratio_ops/Cargo.lock generated Normal file
View File

@ -0,0 +1,7 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "ratio_ops"
version = "0.1.0"

10
ratio_ops/Cargo.toml Normal file
View File

@ -0,0 +1,10 @@
[package]
name = "ratio_ops"
version = "0.1.0"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Ratio operations using trait bounds for avoiding division like the plague."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[dependencies]

176
ratio_ops/LICENSE-APACHE Normal file
View File

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

23
ratio_ops/LICENSE-MIT Normal file
View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

4
ratio_ops/src/lib.rs Normal file
View File

@ -0,0 +1,4 @@
pub mod ratio;
#[cfg(test)]
mod tests;

297
ratio_ops/src/ratio.rs Normal file
View File

@ -0,0 +1,297 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub num:Num,
pub den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
#[inline(always)]
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
/// The actual divide implementation, Div is replaced with a Ratio constructor
pub trait Divide<Rhs=Self>{
type Output;
fn divide(self,rhs:Rhs)->Self::Output;
}
impl<Num,Den> Ratio<Num,Den>
where
Num:Divide<Den>,
{
#[inline]
pub fn divide(self)-><Num as Divide<Den>>::Output{
self.num.divide(self.den)
}
}
//take care to use the ratio methods to avoid nested ratios
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn mul_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsNum>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsNum>,
LhsDen:core::ops::Mul<RhsDen>,
{
Ratio::new(self.num*rhs.num,self.den*rhs.den)
}
#[inline]
pub fn div_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsDen>>::Output,<LhsDen as core::ops::Mul<RhsNum>>::Output>
where
LhsNum:core::ops::Mul<RhsDen>,
LhsDen:core::ops::Mul<RhsNum>,
{
Ratio::new(self.num*rhs.den,self.den*rhs.num)
}
}
macro_rules! impl_ratio_method {
($trait:ident, $method:ident, $ratio_method:ident) => {
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen,LhsCrossMul,RhsCrossMul>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsCrossMul as core::ops::$trait<RhsCrossMul>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsDen,Output=LhsCrossMul>,
LhsDen:core::ops::Mul<RhsNum,Output=RhsCrossMul>,
LhsDen:core::ops::Mul<RhsDen>,
LhsDen:Copy,
RhsDen:Copy,
LhsCrossMul:core::ops::$trait<RhsCrossMul>,
{
Ratio::new((self.num*rhs.den).$method(self.den*rhs.num),self.den*rhs.den)
}
}
};
}
impl_ratio_method!(Add,add,add_ratio);
impl_ratio_method!(Sub,sub,sub_ratio);
impl_ratio_method!(Rem,rem,rem_ratio);
/// Comparing two ratios needs to know the parity of the denominators
/// For signed integers this can be implemented with is_negative()
pub trait Parity{
fn parity(&self)->bool;
}
macro_rules! impl_parity_unsigned{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
false
}
}
)*
};
}
macro_rules! impl_parity_signed{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
self.is_negative()
}
}
)*
};
}
macro_rules! impl_parity_float{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
self.is_sign_negative()
}
}
)*
};
}
impl_parity_unsigned!(u8,u16,u32,u64,u128,usize);
impl_parity_signed!(i8,i16,i32,i64,i128,isize);
impl_parity_float!(f32,f64);
macro_rules! impl_ratio_ord_method{
($method:ident, $ratio_method:ident, $output:ty)=>{
impl<LhsNum,LhsDen:Parity> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen:Parity,T>(self,rhs:Ratio<RhsNum,RhsDen>)->$output
where
LhsNum:core::ops::Mul<RhsDen,Output=T>,
LhsDen:core::ops::Mul<RhsNum,Output=T>,
T:Ord,
{
match self.den.parity()^rhs.den.parity(){
true=>(self.den*rhs.num).$method(&(self.num*rhs.den)),
false=>(self.num*rhs.den).$method(&(self.den*rhs.num)),
}
}
}
}
}
//PartialEq
impl_ratio_ord_method!(eq,eq_ratio,bool);
//PartialOrd
impl_ratio_ord_method!(lt,lt_ratio,bool);
impl_ratio_ord_method!(gt,gt_ratio,bool);
impl_ratio_ord_method!(le,le_ratio,bool);
impl_ratio_ord_method!(ge,ge_ratio,bool);
impl_ratio_ord_method!(partial_cmp,partial_cmp_ratio,Option<core::cmp::Ordering>);
//Ord
impl_ratio_ord_method!(cmp,cmp_ratio,core::cmp::Ordering);
/* generic rhs mul is not possible!
impl<Lhs,RhsNum,RhsDen> core::ops::Mul<Ratio<RhsNum,RhsDen>> for Lhs
where
Lhs:core::ops::Mul<RhsNum>,
{
type Output=Ratio<<Lhs as core::ops::Mul<RhsNum>>::Output,RhsDen>;
#[inline]
fn mul(self,rhs:Ratio<RhsNum,RhsDen>)->Self::Output{
Ratio::new(self*rhs.num,rhs.den)
}
}
*/
//operators
impl<LhsNum,LhsDen> core::ops::Neg for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Neg,
{
type Output=Ratio<<LhsNum as core::ops::Neg>::Output,LhsDen>;
#[inline]
fn neg(self)->Self::Output{
Ratio::new(-self.num,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Mul<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Mul<Rhs>,
{
type Output=Ratio<<LhsNum as core::ops::Mul<Rhs>>::Output,LhsDen>;
#[inline]
fn mul(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num*rhs,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Div<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::Mul<Rhs>,
{
type Output=Ratio<LhsNum,<LhsDen as core::ops::Mul<Rhs>>::Output>;
#[inline]
fn div(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num,self.den*rhs)
}
}
macro_rules! impl_ratio_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs,Intermediate> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait<Intermediate>,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=Intermediate>,
{
type Output=Ratio<<LhsNum as core::ops::$trait<Intermediate>>::Output,LhsDen>;
#[inline]
fn $method(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num.$method(rhs*self.den),self.den)
}
}
};
}
impl_ratio_operator!(Add,add);
impl_ratio_operator!(Sub,sub);
impl_ratio_operator!(Rem,rem);
//assign operators
impl<LhsNum,LhsDen,Rhs> core::ops::MulAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::MulAssign<Rhs>,
{
#[inline]
fn mul_assign(&mut self,rhs:Rhs){
self.num*=rhs;
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::DivAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::MulAssign<Rhs>,
{
#[inline]
fn div_assign(&mut self,rhs:Rhs){
self.den*=rhs;
}
}
macro_rules! impl_ratio_assign_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=LhsNum>,
{
#[inline]
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs*self.den)
}
}
};
}
impl_ratio_assign_operator!(AddAssign,add_assign);
impl_ratio_assign_operator!(SubAssign,sub_assign);
impl_ratio_assign_operator!(RemAssign,rem_assign);
// Only implement PartialEq<Self>
// Rust's operators aren't actually that good
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialEq<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
where
LhsNum:Copy,
LhsDen:Copy,
RhsNum:Copy,
RhsDen:Copy,
LhsNum:core::ops::Mul<RhsDen,Output=T>,
RhsNum:core::ops::Mul<LhsDen,Output=U>,
T:PartialEq<U>,
{
#[inline]
fn eq(&self,other:&Ratio<RhsNum,RhsDen>)->bool{
(self.num*other.den).eq(&(other.num*self.den))
}
}
impl<Num,Den> Eq for Ratio<Num,Den> where Self:PartialEq{}
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialOrd<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
where
LhsNum:Copy,
LhsDen:Copy,
RhsNum:Copy,
RhsDen:Copy,
LhsNum:core::ops::Mul<RhsDen,Output=T>,
RhsNum:core::ops::Mul<LhsDen,Output=U>,
T:PartialOrd<U>,
{
#[inline]
fn partial_cmp(&self,other:&Ratio<RhsNum,RhsDen>)->Option<core::cmp::Ordering>{
(self.num*other.den).partial_cmp(&(other.num*self.den))
}
}
impl<Num,Den,T> Ord for Ratio<Num,Den>
where
Num:Copy,
Den:Copy,
Num:core::ops::Mul<Den,Output=T>,
T:Ord,
{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
(self.num*other.den).cmp(&(other.num*self.den))
}
}

58
ratio_ops/src/tests.rs Normal file
View File

@ -0,0 +1,58 @@
use crate::ratio::Ratio;
macro_rules! test_op{
($ratio_op:ident,$op:ident,$a:expr,$b:expr,$c:expr,$d:expr)=>{
assert_eq!(
Ratio::new($a,$b).$ratio_op(Ratio::new($c,$d)),
(($a as f32)/($b as f32)).$op(&(($c as f32)/($d as f32)))
);
};
}
macro_rules! test_many_ops{
($ratio_op:ident,$op:ident)=>{
test_op!($ratio_op,$op,1,2,3,4);
test_op!($ratio_op,$op,1,2,-3,4);
test_op!($ratio_op,$op,-1,2,-3,4);
test_op!($ratio_op,$op,-1,-2,-3,4);
test_op!($ratio_op,$op,2,1,6,3);
test_op!($ratio_op,$op,-2,1,6,3);
test_op!($ratio_op,$op,2,-1,-6,3);
test_op!($ratio_op,$op,2,1,6,-3);
};
}
#[test]
fn test_lt(){
test_many_ops!(lt_ratio,lt);
}
#[test]
fn test_gt(){
test_many_ops!(gt_ratio,gt);
}
#[test]
fn test_le(){
test_many_ops!(le_ratio,le);
}
#[test]
fn test_ge(){
test_many_ops!(ge_ratio,ge);
}
#[test]
fn test_eq(){
test_many_ops!(eq_ratio,eq);
}
#[test]
fn test_partial_cmp(){
test_many_ops!(partial_cmp_ratio,partial_cmp);
}
// #[test]
// fn test_cmp(){
// test_many_ops!(cmp_ratio,cmp);
// }