strafe-client-jed/src/integer.rs

953 lines
25 KiB
Rust

//integer units
#[derive(Clone,Copy,Hash,PartialEq,PartialOrd,Debug)]
pub struct Time(i64);
impl Time{
pub const ZERO:Self=Self(0);
pub const ONE_SECOND:Self=Self(1_000_000_000);
pub const ONE_MILLISECOND:Self=Self(1_000_000);
pub const ONE_MICROSECOND:Self=Self(1_000);
pub const ONE_NANOSECOND:Self=Self(1);
#[inline]
pub fn from_secs(num:i64)->Self{
Self(Self::ONE_SECOND.0*num)
}
#[inline]
pub fn from_millis(num:i64)->Self{
Self(Self::ONE_MILLISECOND.0*num)
}
#[inline]
pub fn from_micros(num:i64)->Self{
Self(Self::ONE_MICROSECOND.0*num)
}
#[inline]
pub fn from_nanos(num:i64)->Self{
Self(Self::ONE_NANOSECOND.0*num)
}
//should I have checked subtraction? force all time variables to be positive?
#[inline]
pub fn nanos(&self)->i64{
self.0
}
}
impl From<Planar64> for Time{
#[inline]
fn from(value:Planar64)->Self{
Time((((value.0 as i128)*1_000_000_000)>>32) as i64)
}
}
impl std::fmt::Display for Time{
#[inline]
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{}s+{:09}ns",self.0/Self::ONE_SECOND.0,self.0%Self::ONE_SECOND.0)
}
}
impl std::ops::Neg for Time{
type Output=Time;
#[inline]
fn neg(self)->Self::Output {
Time(-self.0)
}
}
impl std::ops::Add<Time> for Time{
type Output=Time;
#[inline]
fn add(self,rhs:Self)->Self::Output {
Time(self.0+rhs.0)
}
}
impl std::ops::Sub<Time> for Time{
type Output=Time;
#[inline]
fn sub(self,rhs:Self)->Self::Output {
Time(self.0-rhs.0)
}
}
impl std::ops::Mul<Time> for Time{
type Output=Time;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Self((((self.0 as i128)*(rhs.0 as i128))/1_000_000_000) as i64)
}
}
impl std::ops::Div<i64> for Time{
type Output=Time;
#[inline]
fn div(self,rhs:i64)->Self::Output {
Time(self.0/rhs)
}
}
#[inline]
const fn gcd(mut a:u64,mut b:u64)->u64{
while b!=0{
(a,b)=(b,a.rem_euclid(b));
};
a
}
#[derive(Clone,Hash)]
pub struct Ratio64{
num:i64,
den:u64,
}
impl Ratio64{
pub const ZERO:Self=Ratio64{num:0,den:1};
pub const ONE:Self=Ratio64{num:1,den:1};
#[inline]
pub const fn new(num:i64,den:u64)->Option<Ratio64>{
if den==0{
None
}else{
let d=gcd(num.unsigned_abs(),den);
Some(Self{num:num/d as i64,den:den/d})
}
}
#[inline]
pub fn mul_int(&self,rhs:i64)->i64{
rhs*self.num/self.den as i64
}
#[inline]
pub fn rhs_div_int(&self,rhs:i64)->i64{
rhs*self.den as i64/self.num
}
#[inline]
pub fn mul_ref(&self,rhs:&Ratio64)->Ratio64{
let (num,den)=(self.num*rhs.num,self.den*rhs.den);
let d=gcd(num.unsigned_abs(),den);
Self{
num:num/d as i64,
den:den/d,
}
}
}
//from num_traits crate
#[inline]
fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
let bits: u32 = f.to_bits();
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
#[inline]
fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
let bits: u64 = f.to_bits();
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
#[derive(Debug)]
pub enum Ratio64TryFromFloatError{
Nan,
Infinite,
Subnormal,
HighlyNegativeExponent(i16),
HighlyPositiveExponent(i16),
}
const MAX_DENOMINATOR:u128=u64::MAX as u128;
#[inline]
fn ratio64_from_mes((m,e,s):(u64,i16,i8))->Result<Ratio64,Ratio64TryFromFloatError>{
if e< -127{
//this can also just be zero
Err(Ratio64TryFromFloatError::HighlyNegativeExponent(e))
}else if e< -63{
//approximate input ratio within denominator limit
let mut target_num=m as u128;
let mut target_den=1u128<<-e;
let mut num=1;
let mut den=0;
let mut prev_num=0;
let mut prev_den=1;
while target_den!=0{
let whole=target_num/target_den;
(target_num,target_den)=(target_den,target_num-whole*target_den);
let new_num=whole*num+prev_num;
let new_den=whole*den+prev_den;
if MAX_DENOMINATOR<new_den{
break;
}else{
(prev_num,prev_den)=(num,den);
(num,den)=(new_num,new_den);
}
}
Ok(Ratio64::new(num as i64,den as u64).unwrap())
}else if e<0{
Ok(Ratio64::new((m as i64)*(s as i64),1<<-e).unwrap())
}else if (64-m.leading_zeros() as i16)+e<64{
Ok(Ratio64::new((m as i64)*(s as i64)*(1<<e),1).unwrap())
}else{
Err(Ratio64TryFromFloatError::HighlyPositiveExponent(e))
}
}
impl TryFrom<f32> for Ratio64{
type Error=Ratio64TryFromFloatError;
#[inline]
fn try_from(value:f32)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f32(value)),
}
}
}
impl TryFrom<f64> for Ratio64{
type Error=Ratio64TryFromFloatError;
#[inline]
fn try_from(value:f64)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f64(value)),
}
}
}
impl std::ops::Mul<Ratio64> for Ratio64{
type Output=Ratio64;
#[inline]
fn mul(self,rhs:Ratio64)->Self::Output{
let (num,den)=(self.num*rhs.num,self.den*rhs.den);
let d=gcd(num.unsigned_abs(),den);
Self{
num:num/d as i64,
den:den/d,
}
}
}
impl std::ops::Mul<i64> for Ratio64{
type Output=Ratio64;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Self{
num:self.num*rhs,
den:self.den,
}
}
}
impl std::ops::Div<u64> for Ratio64{
type Output=Ratio64;
#[inline]
fn div(self,rhs:u64)->Self::Output {
Self{
num:self.num,
den:self.den*rhs,
}
}
}
#[derive(Clone,Hash)]
pub struct Ratio64Vec2{
pub x:Ratio64,
pub y:Ratio64,
}
impl Ratio64Vec2{
pub const ONE:Self=Self{x:Ratio64::ONE,y:Ratio64::ONE};
#[inline]
pub fn new(x:Ratio64,y:Ratio64)->Self{
Self{x,y}
}
#[inline]
pub fn mul_int(&self,rhs:glam::I64Vec2)->glam::I64Vec2{
glam::i64vec2(
self.x.mul_int(rhs.x),
self.y.mul_int(rhs.y),
)
}
}
impl std::ops::Mul<i64> for Ratio64Vec2{
type Output=Ratio64Vec2;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Self{
x:self.x*rhs,
y:self.y*rhs,
}
}
}
///[-pi,pi) = [-2^31,2^31-1]
#[derive(Clone,Copy,Hash)]
pub struct Angle32(i32);
impl Angle32{
pub const FRAC_PI_2:Self=Self(1<<30);
pub const PI:Self=Self(-1<<31);
#[inline]
pub fn wrap_from_i64(theta:i64)->Self{
//take lower bits
//note: this was checked on compiler explorer and compiles to 1 instruction!
Self(i32::from_ne_bytes(((theta&((1<<32)-1)) as u32).to_ne_bytes()))
}
#[inline]
pub fn clamp_from_i64(theta:i64)->Self{
//the assembly is a bit confusing for this, I thought it was checking the same thing twice
//but it's just checking and then overwriting the value for both upper and lower bounds.
Self(theta.clamp(i32::MIN as i64,i32::MAX as i64) as i32)
}
#[inline]
pub fn get(&self)->i32{
self.0
}
/// Clamps the value towards the midpoint of the range.
/// Note that theta_min can be larger than theta_max and it will wrap clamp the other way around
#[inline]
pub fn clamp(&self,theta_min:Self,theta_max:Self)->Self{
//((max-min as u32)/2 as i32)+min
let midpoint=((
u32::from_ne_bytes(theta_max.0.to_ne_bytes())
.wrapping_sub(u32::from_ne_bytes(theta_min.0.to_ne_bytes()))
/2
) as i32)//(u32::MAX/2) as i32 ALWAYS works
.wrapping_add(theta_min.0);
//(theta-mid).clamp(max-mid,min-mid)+mid
Self(
self.0.wrapping_sub(midpoint)
.max(theta_min.0.wrapping_sub(midpoint))
.min(theta_max.0.wrapping_sub(midpoint))
.wrapping_add(midpoint)
)
}
/*
#[inline]
pub fn cos(&self)->Unit32{
//TODO: fix this rounding towards 0
Unit32(unsafe{((self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS).cos()*UNIT32_ONE_FLOAT64).to_int_unchecked()})
}
#[inline]
pub fn sin(&self)->Unit32{
//TODO: fix this rounding towards 0
Unit32(unsafe{((self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS).sin()*UNIT32_ONE_FLOAT64).to_int_unchecked()})
}
*/
}
const ANGLE32_TO_FLOAT64_RADIANS:f64=std::f64::consts::PI/((1i64<<31) as f64);
impl Into<f32> for Angle32{
#[inline]
fn into(self)->f32{
(self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS) as f32
}
}
impl std::ops::Neg for Angle32{
type Output=Angle32;
#[inline]
fn neg(self)->Self::Output{
Angle32(self.0.wrapping_neg())
}
}
impl std::ops::Add<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn add(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_add(rhs.0))
}
}
impl std::ops::Sub<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn sub(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_sub(rhs.0))
}
}
impl std::ops::Mul<i32> for Angle32{
type Output=Angle32;
#[inline]
fn mul(self,rhs:i32)->Self::Output {
Angle32(self.0.wrapping_mul(rhs))
}
}
impl std::ops::Mul<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn mul(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_mul(rhs.0))
}
}
/* Unit type unused for now, may revive it for map files
///[-1.0,1.0] = [-2^30,2^30]
pub struct Unit32(i32);
impl Unit32{
#[inline]
pub fn as_planar64(&self) -> Planar64{
Planar64(4*(self.0 as i64))
}
}
const UNIT32_ONE_FLOAT64=((1<<30) as f64);
///[-1.0,1.0] = [-2^30,2^30]
pub struct Unit32Vec3(glam::IVec3);
impl TryFrom<[f32;3]> for Unit32Vec3{
type Error=Unit32TryFromFloatError;
fn try_from(value:[f32;3])->Result<Self,Self::Error>{
Ok(Self(glam::ivec3(
Unit32::try_from(Planar64::try_from(value[0])?)?.0,
Unit32::try_from(Planar64::try_from(value[1])?)?.0,
Unit32::try_from(Planar64::try_from(value[2])?)?.0,
)))
}
}
*/
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Hash,Eq,Ord,PartialEq,PartialOrd)]
pub struct Planar64(i64);
impl Planar64{
pub const ZERO:Self=Self(0);
pub const ONE:Self=Self(1<<32);
#[inline]
pub const fn int(num:i32)->Self{
Self(Self::ONE.0*num as i64)
}
#[inline]
pub const fn raw(num:i64)->Self{
Self(num)
}
#[inline]
pub const fn get(&self)->i64{
self.0
}
pub fn sqrt(&self)->Self{
Planar64(unsafe{(((self.0 as i128)<<32) as f64).sqrt().to_int_unchecked()})
}
}
const PLANAR64_ONE_FLOAT32:f32=(1u64<<32) as f32;
const PLANAR64_CONVERT_TO_FLOAT32:f32=1.0/PLANAR64_ONE_FLOAT32;
const PLANAR64_ONE_FLOAT64:f64=(1u64<<32) as f64;
impl Into<f32> for Planar64{
#[inline]
fn into(self)->f32{
self.0 as f32*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl From<Ratio64> for Planar64{
#[inline]
fn from(ratio:Ratio64)->Self{
Self((((ratio.num as i128)<<32)/ratio.den as i128) as i64)
}
}
#[derive(Debug)]
pub enum Planar64TryFromFloatError{
Nan,
Infinite,
Subnormal,
HighlyNegativeExponent(i16),
HighlyPositiveExponent(i16),
}
#[inline]
fn planar64_from_mes((m,e,s):(u64,i16,i8))->Result<Planar64,Planar64TryFromFloatError>{
let e32=e+32;
if e32<0&&(m>>-e32)==0{//shifting m will underflow to 0
Ok(Planar64::ZERO)
// println!("m{} e{} s{}",m,e,s);
// println!("f={}",(m as f64)*(2.0f64.powf(e as f64))*(s as f64));
// Err(Planar64TryFromFloatError::HighlyNegativeExponent(e))
}else if (64-m.leading_zeros() as i16)+e32<64{//shifting m will not overflow
if e32<0{
Ok(Planar64((m as i64)*(s as i64)>>-e32))
}else{
Ok(Planar64((m as i64)*(s as i64)<<e32))
}
}else{//if shifting m will overflow (prev check failed)
Err(Planar64TryFromFloatError::HighlyPositiveExponent(e))
}
}
impl TryFrom<f32> for Planar64{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:f32)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>planar64_from_mes(integer_decode_f32(value)),
}
}
}
impl TryFrom<f64> for Planar64{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:f64)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>planar64_from_mes(integer_decode_f64(value)),
}
}
}
impl std::fmt::Display for Planar64{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{:.3}",
Into::<f32>::into(*self),
)
}
}
impl std::ops::Neg for Planar64{
type Output=Planar64;
#[inline]
fn neg(self)->Self::Output{
Planar64(-self.0)
}
}
impl std::ops::Add<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
Planar64(self.0+rhs.0)
}
}
impl std::ops::Sub<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
Planar64(self.0-rhs.0)
}
}
impl std::ops::Mul<i64> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self, rhs: i64) -> Self::Output {
Planar64(self.0*rhs)
}
}
impl std::ops::Mul<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Planar64(((self.0 as i128*rhs.0 as i128)>>32) as i64)
}
}
impl std::ops::Mul<Time> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Planar64(((self.0 as i128*rhs.0 as i128)/1_000_000_000) as i64)
}
}
impl std::ops::Div<i64> for Planar64{
type Output=Planar64;
#[inline]
fn div(self, rhs: i64) -> Self::Output {
Planar64(self.0/rhs)
}
}
impl std::ops::Div<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn div(self, rhs: Planar64) -> Self::Output {
Planar64((((self.0 as i128)<<32)/rhs.0 as i128) as i64)
}
}
// impl PartialOrd<i64> for Planar64{
// fn partial_cmp(&self, other: &i64) -> Option<std::cmp::Ordering> {
// self.0.partial_cmp(other)
// }
// }
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Default,Hash,Eq,PartialEq)]
pub struct Planar64Vec3(glam::I64Vec3);
impl Planar64Vec3{
pub const ZERO:Self=Planar64Vec3(glam::I64Vec3::ZERO);
pub const ONE:Self=Self::int(1,1,1);
pub const X:Self=Self::int(1,0,0);
pub const Y:Self=Self::int(0,1,0);
pub const Z:Self=Self::int(0,0,1);
pub const NEG_X:Self=Self::int(-1,0,0);
pub const NEG_Y:Self=Self::int(0,-1,0);
pub const NEG_Z:Self=Self::int(0,0,-1);
pub const MIN:Self=Planar64Vec3(glam::I64Vec3::MIN);
pub const MAX:Self=Planar64Vec3(glam::I64Vec3::MAX);
#[inline]
pub const fn int(x:i32,y:i32,z:i32)->Self{
Self(glam::i64vec3((x as i64)<<32,(y as i64)<<32,(z as i64)<<32))
}
#[inline]
pub const fn raw(x:i64,y:i64,z:i64)->Self{
Self(glam::i64vec3(x,y,z))
}
#[inline]
pub fn x(&self)->Planar64{
Planar64(self.0.x)
}
#[inline]
pub fn y(&self)->Planar64{
Planar64(self.0.y)
}
#[inline]
pub fn z(&self)->Planar64{
Planar64(self.0.z)
}
#[inline]
pub fn min(&self,rhs:Self)->Self{
Self(glam::i64vec3(
self.0.x.min(rhs.0.x),
self.0.y.min(rhs.0.y),
self.0.z.min(rhs.0.z),
))
}
#[inline]
pub fn max(&self,rhs:Self)->Self{
Self(glam::i64vec3(
self.0.x.max(rhs.0.x),
self.0.y.max(rhs.0.y),
self.0.z.max(rhs.0.z),
))
}
#[inline]
pub fn midpoint(&self,rhs:Self)->Self{
Self((self.0+rhs.0)/2)
}
#[inline]
pub fn cmplt(&self,rhs:Self)->glam::BVec3{
self.0.cmplt(rhs.0)
}
#[inline]
pub fn dot(&self,rhs:Self)->Planar64{
Planar64(((
(self.0.x as i128)*(rhs.0.x as i128)+
(self.0.y as i128)*(rhs.0.y as i128)+
(self.0.z as i128)*(rhs.0.z as i128)
)>>32) as i64)
}
#[inline]
pub fn length(&self)->Planar64{
let radicand=(self.0.x as i128)*(self.0.x as i128)+(self.0.y as i128)*(self.0.y as i128)+(self.0.z as i128)*(self.0.z as i128);
Planar64(unsafe{(radicand as f64).sqrt().to_int_unchecked()})
}
#[inline]
pub fn with_length(&self,length:Planar64)->Self{
let radicand=(self.0.x as i128)*(self.0.x as i128)+(self.0.y as i128)*(self.0.y as i128)+(self.0.z as i128)*(self.0.z as i128);
let self_length:i128=unsafe{(radicand as f64).sqrt().to_int_unchecked()};
//self.0*length/self_length
Planar64Vec3(
glam::i64vec3(
((self.0.x as i128)*(length.0 as i128)/self_length) as i64,
((self.0.y as i128)*(length.0 as i128)/self_length) as i64,
((self.0.z as i128)*(length.0 as i128)/self_length) as i64,
)
)
}
}
impl Into<glam::Vec3> for Planar64Vec3{
#[inline]
fn into(self)->glam::Vec3{
glam::vec3(
self.0.x as f32,
self.0.y as f32,
self.0.z as f32,
)*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl TryFrom<[f32;3]> for Planar64Vec3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:[f32;3])->Result<Self,Self::Error>{
Ok(Self(glam::i64vec3(
Planar64::try_from(value[0])?.0,
Planar64::try_from(value[1])?.0,
Planar64::try_from(value[2])?.0,
)))
}
}
impl TryFrom<glam::Vec3A> for Planar64Vec3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:glam::Vec3A)->Result<Self,Self::Error>{
Ok(Self(glam::i64vec3(
Planar64::try_from(value.x)?.0,
Planar64::try_from(value.y)?.0,
Planar64::try_from(value.z)?.0,
)))
}
}
impl std::fmt::Display for Planar64Vec3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{:.3},{:.3},{:.3}",
Into::<f32>::into(self.x()),Into::<f32>::into(self.y()),Into::<f32>::into(self.z()),
)
}
}
impl std::ops::Neg for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn neg(self)->Self::Output{
Planar64Vec3(-self.0)
}
}
impl std::ops::Add<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn add(self,rhs:Planar64Vec3) -> Self::Output {
Planar64Vec3(self.0+rhs.0)
}
}
impl std::ops::AddAssign<Planar64Vec3> for Planar64Vec3{
#[inline]
fn add_assign(&mut self,rhs:Planar64Vec3){
*self=*self+rhs
}
}
impl std::ops::Sub<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn sub(self,rhs:Planar64Vec3) -> Self::Output {
Planar64Vec3(self.0-rhs.0)
}
}
impl std::ops::SubAssign<Planar64Vec3> for Planar64Vec3{
#[inline]
fn sub_assign(&mut self,rhs:Planar64Vec3){
*self=*self-rhs
}
}
impl std::ops::Mul<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self, rhs: Planar64Vec3) -> Self::Output {
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0.x as i128))>>32) as i64,
(((self.0.y as i128)*(rhs.0.y as i128))>>32) as i64,
(((self.0.z as i128)*(rhs.0.z as i128))>>32) as i64
))
}
}
impl std::ops::Mul<Planar64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self, rhs: Planar64) -> Self::Output {
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0 as i128))>>32) as i64,
(((self.0.y as i128)*(rhs.0 as i128))>>32) as i64,
(((self.0.z as i128)*(rhs.0 as i128))>>32) as i64
))
}
}
impl std::ops::Mul<i64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Planar64Vec3(glam::i64vec3(
self.0.x*rhs,
self.0.y*rhs,
self.0.z*rhs
))
}
}
impl std::ops::Mul<Time> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0 as i128))/1_000_000_000) as i64,
(((self.0.y as i128)*(rhs.0 as i128))/1_000_000_000) as i64,
(((self.0.z as i128)*(rhs.0 as i128))/1_000_000_000) as i64
))
}
}
impl std::ops::Div<i64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn div(self,rhs:i64)->Self::Output{
Planar64Vec3(glam::i64vec3(
self.0.x/rhs,
self.0.y/rhs,
self.0.z/rhs,
))
}
}
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy)]
pub struct Planar64Mat3{
x_axis:Planar64Vec3,
y_axis:Planar64Vec3,
z_axis:Planar64Vec3,
}
impl Default for Planar64Mat3{
#[inline]
fn default() -> Self {
Self{
x_axis:Planar64Vec3::X,
y_axis:Planar64Vec3::Y,
z_axis:Planar64Vec3::Z,
}
}
}
impl std::ops::Mul<Planar64Vec3> for Planar64Mat3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:Planar64Vec3) -> Self::Output {
self.x_axis*rhs.x()
+self.y_axis*rhs.y()
+self.z_axis*rhs.z()
}
}
impl Planar64Mat3{
#[inline]
pub fn from_cols(x_axis:Planar64Vec3,y_axis:Planar64Vec3,z_axis:Planar64Vec3)->Self{
Self{
x_axis,
y_axis,
z_axis,
}
}
pub const fn int_from_cols_array(array:[i32;9])->Self{
Self{
x_axis:Planar64Vec3::int(array[0],array[1],array[2]),
y_axis:Planar64Vec3::int(array[3],array[4],array[5]),
z_axis:Planar64Vec3::int(array[6],array[7],array[8]),
}
}
#[inline]
pub fn from_rotation_yx(yaw:Angle32,pitch:Angle32)->Self{
let xtheta=yaw.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (xs,xc)=xtheta.sin_cos();
let (xc,xs)=(xc*PLANAR64_ONE_FLOAT64,xs*PLANAR64_ONE_FLOAT64);
let ytheta=pitch.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (ys,yc)=ytheta.sin_cos();
let (yc,ys)=(yc*PLANAR64_ONE_FLOAT64,ys*PLANAR64_ONE_FLOAT64);
//TODO: fix this rounding towards 0
let (xc,xs):(i64,i64)=(unsafe{xc.to_int_unchecked()},unsafe{xs.to_int_unchecked()});
let (yc,ys):(i64,i64)=(unsafe{yc.to_int_unchecked()},unsafe{ys.to_int_unchecked()});
Self::from_cols(
Planar64Vec3(glam::i64vec3(xc,0,-xs)),
Planar64Vec3(glam::i64vec3(((xs as i128*ys as i128)>>32) as i64,yc,((xc as i128*ys as i128)>>32) as i64)),
Planar64Vec3(glam::i64vec3(((xs as i128*yc as i128)>>32) as i64,-ys,((xc as i128*yc as i128)>>32) as i64)),
)
}
#[inline]
pub fn from_rotation_y(angle:Angle32)->Self{
let theta=angle.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (s,c)=theta.sin_cos();
let (c,s)=(c*PLANAR64_ONE_FLOAT64,s*PLANAR64_ONE_FLOAT64);
//TODO: fix this rounding towards 0
let (c,s):(i64,i64)=(unsafe{c.to_int_unchecked()},unsafe{s.to_int_unchecked()});
Self::from_cols(
Planar64Vec3(glam::i64vec3(c,0,-s)),
Planar64Vec3::Y,
Planar64Vec3(glam::i64vec3(s,0,c)),
)
}
}
impl Into<glam::Mat3> for Planar64Mat3{
#[inline]
fn into(self)->glam::Mat3{
glam::Mat3::from_cols(
self.x_axis.into(),
self.y_axis.into(),
self.z_axis.into(),
)
}
}
impl TryFrom<glam::Mat3A> for Planar64Mat3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:glam::Mat3A)->Result<Self,Self::Error>{
Ok(Self{
x_axis:Planar64Vec3::try_from(value.x_axis)?,
y_axis:Planar64Vec3::try_from(value.y_axis)?,
z_axis:Planar64Vec3::try_from(value.z_axis)?,
})
}
}
impl std::fmt::Display for Planar64Mat3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}",
Into::<f32>::into(self.x_axis.x()),Into::<f32>::into(self.x_axis.y()),Into::<f32>::into(self.x_axis.z()),
Into::<f32>::into(self.y_axis.x()),Into::<f32>::into(self.y_axis.y()),Into::<f32>::into(self.y_axis.z()),
Into::<f32>::into(self.z_axis.x()),Into::<f32>::into(self.z_axis.y()),Into::<f32>::into(self.z_axis.z()),
)
}
}
impl std::ops::Div<i64> for Planar64Mat3{
type Output=Planar64Mat3;
#[inline]
fn div(self,rhs:i64)->Self::Output{
Planar64Mat3{
x_axis:self.x_axis/rhs,
y_axis:self.y_axis/rhs,
z_axis:self.z_axis/rhs,
}
}
}
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Default)]
pub struct Planar64Affine3{
pub matrix3:Planar64Mat3,//includes scale above 1
pub translation:Planar64Vec3,
}
impl Planar64Affine3{
#[inline]
pub fn new(matrix3:Planar64Mat3,translation:Planar64Vec3)->Self{
Self{matrix3,translation}
}
#[inline]
pub fn transform_point3(&self,point:Planar64Vec3) -> Planar64Vec3{
Planar64Vec3(
self.translation.0
+(self.matrix3.x_axis*point.x()).0
+(self.matrix3.y_axis*point.y()).0
+(self.matrix3.z_axis*point.z()).0
)
}
}
impl Into<glam::Mat4> for Planar64Affine3{
#[inline]
fn into(self)->glam::Mat4{
glam::Mat4::from_cols_array(&[
self.matrix3.x_axis.0.x as f32,self.matrix3.x_axis.0.y as f32,self.matrix3.x_axis.0.z as f32,0.0,
self.matrix3.y_axis.0.x as f32,self.matrix3.y_axis.0.y as f32,self.matrix3.y_axis.0.z as f32,0.0,
self.matrix3.z_axis.0.x as f32,self.matrix3.z_axis.0.y as f32,self.matrix3.z_axis.0.z as f32,0.0,
self.translation.0.x as f32,self.translation.0.y as f32,self.translation.0.z as f32,PLANAR64_ONE_FLOAT32
])*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl TryFrom<glam::Affine3A> for Planar64Affine3{
type Error=Planar64TryFromFloatError;
fn try_from(value: glam::Affine3A)->Result<Self, Self::Error> {
Ok(Self{
matrix3:Planar64Mat3::try_from(value.matrix3)?,
translation:Planar64Vec3::try_from(value.translation)?
})
}
}
impl std::fmt::Display for Planar64Affine3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"translation: {:.3},{:.3},{:.3}\nmatrix3:\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}",
Into::<f32>::into(self.translation.x()),Into::<f32>::into(self.translation.y()),Into::<f32>::into(self.translation.z()),
Into::<f32>::into(self.matrix3.x_axis.x()),Into::<f32>::into(self.matrix3.x_axis.y()),Into::<f32>::into(self.matrix3.x_axis.z()),
Into::<f32>::into(self.matrix3.y_axis.x()),Into::<f32>::into(self.matrix3.y_axis.y()),Into::<f32>::into(self.matrix3.y_axis.z()),
Into::<f32>::into(self.matrix3.z_axis.x()),Into::<f32>::into(self.matrix3.z_axis.y()),Into::<f32>::into(self.matrix3.z_axis.z()),
)
}
}
#[test]
fn test_sqrt(){
let r=Planar64::int(400);
println!("r{}",r.get());
let s=r.sqrt();
println!("s{}",s.get());
}