strafe-client-jed/src/body.rs

1038 lines
32 KiB
Rust

use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
#[derive(Debug)]
pub enum PhysicsInstruction {
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
//InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
Input(InputInstruction),
//temp
SetSpawnPosition(glam::Vec3),
}
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveForward(bool),
MoveLeft(bool),
MoveBack(bool),
MoveRight(bool),
MoveUp(bool),
MoveDown(bool),
Jump(bool),
Zoom(bool),
Reset,
}
pub struct Body {
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD!
}
trait MyHash{
fn hash(&self) -> u64;
}
impl MyHash for Body {
fn hash(&self) -> u64 {
let mut hasher=std::collections::hash_map::DefaultHasher::new();
for &el in self.position.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.velocity.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.acceleration.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice());
return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid
}
}
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
}
/*
enum InputInstruction {
}
struct InputState {
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
}
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<InputInstruction>> {
//this is polled by PhysicsState for actions like Jump
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
self.queue.get(0)
}
}
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
//add to queue
self.queue.push(ins);
}
}
*/
enum MouseInterpolation {
First,//just checks the last value
Lerp,//lerps between
}
pub struct MouseInterpolationState {
interpolation: MouseInterpolation,
time0: TIME,
time1: TIME,
mouse0: glam::IVec2,
mouse1: glam::IVec2,
}
impl MouseInterpolationState {
pub fn new() -> Self {
Self {
interpolation:MouseInterpolation::First,
time0:0,
time1:1,//ONE NANOSECOND!!!! avoid divide by zero
mouse0:glam::IVec2::ZERO,
mouse1:glam::IVec2::ZERO,
}
}
pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){
self.time0=self.time1;
self.mouse0=self.mouse1;
self.time1=time;
self.mouse1=self.mouse1+delta;
}
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
match self.interpolation {
MouseInterpolation::First => self.mouse0,
MouseInterpolation::Lerp => {
let m0=self.mouse0.as_i64vec2();
let m1=self.mouse1.as_i64vec2();
//these are deltas
let t1t=(self.time1-time) as i64;
let tt0=(time-self.time0) as i64;
let dt=(self.time1-self.time0) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
}
}
pub enum WalkEnum{
Reached,
Transient,
}
pub struct WalkState {
pub target_velocity: glam::Vec3,
pub target_time: TIME,
pub state: WalkEnum,
}
impl WalkState {
pub fn new() -> Self {
Self{
target_velocity:glam::Vec3::ZERO,
target_time:0,
state:WalkEnum::Reached,
}
}
}
// Note: we use the Y=up coordinate space in this example.
pub struct Camera {
offset: glam::Vec3,
angles: glam::DVec2,//YAW AND THEN PITCH
//punch: glam::Vec3,
//punch_velocity: glam::Vec3,
fov: glam::Vec2,//slope
sensitivity: glam::DVec2,
time: TIME,
}
#[inline]
fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
let (sina, cosa) = angle.sin_cos();
glam::Mat3::from_cols(
glam::Vec3::new(cosa as f32, 0.0, -sina as f32),
glam::Vec3::Y,
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
)
}
#[inline]
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl Camera {
pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self {
Self{
offset,
angles: glam::DVec2::ZERO,
fov: glam::vec2(aspect,1.0),
sensitivity: glam::dvec2(1.0/4096.0,1.0/4096.0),
time: 0,
}
}
fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 {
let mut a=self.angles-self.sensitivity*delta.as_dvec2();
a.y=a.y.clamp(-std::f64::consts::PI, std::f64::consts::PI);
return a
}
fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 {
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64))
}
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 1000.0)
}
pub fn view(&self,pos:glam::Vec3)->glam::Mat4{
//f32 good enough for view matrix
glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32)
}
pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){
self.fov.x=fov*aspect;
self.fov.y=fov;
}
}
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
const CONTROL_MOVEBACK:u32 = 0b00000010;
const CONTROL_MOVERIGHT:u32 = 0b00000100;
const CONTROL_MOVELEFT:u32 = 0b00001000;
const CONTROL_MOVEUP:u32 = 0b00010000;
const CONTROL_MOVEDOWN:u32 = 0b00100000;
const CONTROL_JUMP:u32 = 0b01000000;
const CONTROL_ZOOM:u32 = 0b10000000;
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
fn get_control_dir(controls: u32) -> glam::Vec3{
//don't get fancy just do it
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
control_dir+=FORWARD_DIR;
}
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
control_dir+=-FORWARD_DIR;
}
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
control_dir+=-RIGHT_DIR;
}
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
control_dir+=RIGHT_DIR;
}
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
control_dir+=UP_DIR;
}
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
control_dir+=-UP_DIR;
}
return control_dir
}
pub struct PhysicsState {
pub body: Body,
pub hitbox_halfsize: glam::Vec3,
pub contacts: std::collections::HashSet::<RelativeCollision>,
//pub intersections: Vec<ModelId>,
pub models: Vec<ModelPhysics>,
//camera must exist in state because wormholes modify the camera, also camera punch
pub camera: Camera,
pub mouse_interpolation: MouseInterpolationState,
pub controls: u32,
pub time: TIME,
pub strafe_tick_num: TIME,
pub strafe_tick_den: TIME,
pub tick: u32,
pub mv: f32,
pub walk: WalkState,
pub walkspeed: f32,
pub friction: f32,
pub walk_accel: f32,
pub gravity: glam::Vec3,
pub grounded: bool,
pub spawn_point: glam::Vec3,
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum AabbFace{
Right,//+X
Top,
Back,
Left,
Bottom,
Front,
}
#[derive(Clone)]
pub struct Aabb {
min: glam::Vec3,
max: glam::Vec3,
}
impl Aabb {
// const FACE_DATA: [[f32; 3]; 6] = [
// [0.0f32, 0., 1.],
// [0.0f32, 0., -1.],
// [1.0f32, 0., 0.],
// [-1.0f32, 0., 0.],
// [0.0f32, 1., 0.],
// [0.0f32, -1., 0.],
// ];
const VERTEX_DATA: [glam::Vec3; 8] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
];
const VERTEX_DATA_TOP: [glam::Vec3; 4] = [
glam::vec3(1., 1., -1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., 1., 1.),
glam::vec3(1., 1., 1.),
];
const VERTEX_DATA_BACK: [glam::Vec3; 4] = [
glam::vec3(-1., -1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(1., 1., 1.),
glam::vec3(-1., 1., 1.),
];
const VERTEX_DATA_LEFT: [glam::Vec3; 4] = [
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
const VERTEX_DATA_BOTTOM: [glam::Vec3; 4] = [
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., -1., -1.),
glam::vec3(1., -1., -1.),
];
const VERTEX_DATA_FRONT: [glam::Vec3; 4] = [
glam::vec3(-1., 1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., -1., -1.),
glam::vec3(-1., -1., -1.),
];
pub fn new() -> Self {
Self {min: glam::Vec3::INFINITY,max: glam::Vec3::NEG_INFINITY}
}
pub fn grow(&mut self, point:glam::Vec3){
self.min=self.min.min(point);
self.max=self.max.max(point);
}
pub fn normal(face:AabbFace) -> glam::Vec3 {
match face {
AabbFace::Right => glam::vec3(1.,0.,0.),
AabbFace::Top => glam::vec3(0.,1.,0.),
AabbFace::Back => glam::vec3(0.,0.,1.),
AabbFace::Left => glam::vec3(-1.,0.,0.),
AabbFace::Bottom => glam::vec3(0.,-1.,0.),
AabbFace::Front => glam::vec3(0.,0.,-1.),
}
}
pub fn unit_vertices() -> [glam::Vec3;8] {
return Self::VERTEX_DATA;
}
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
match face {
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
AabbFace::Top => Self::VERTEX_DATA_TOP,
AabbFace::Back => Self::VERTEX_DATA_BACK,
AabbFace::Left => Self::VERTEX_DATA_LEFT,
AabbFace::Bottom => Self::VERTEX_DATA_BOTTOM,
AabbFace::Front => Self::VERTEX_DATA_FRONT,
}
}
}
//pretend to be using what we want to eventually do
type TreyMeshFace = AabbFace;
type TreyMesh = Aabb;
pub struct ModelPhysics {
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
//in this iteration, all it needs is extents.
mesh: TreyMesh,
}
impl ModelPhysics {
pub fn from_model(model:&crate::model::IndexedModel,model_transform:glam::Affine3A) -> Self {
let mut aabb=Aabb::new();
for indexed_vertex in &model.unique_vertices {
aabb.grow(model_transform.transform_point3(glam::Vec3::from_array(model.unique_pos[indexed_vertex.pos as usize])));
}
Self{
mesh:aabb,
}
}
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
Aabb::unit_vertices()
}
pub fn mesh(&self) -> &TreyMesh {
return &self.mesh;
}
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
Aabb::unit_face_vertices(face)
}
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
let mut aabb=self.mesh.clone();
//in this implementation face = worldspace aabb face
match face {
AabbFace::Right => aabb.min.x=aabb.max.x,
AabbFace::Top => aabb.min.y=aabb.max.y,
AabbFace::Back => aabb.min.z=aabb.max.z,
AabbFace::Left => aabb.max.x=aabb.min.x,
AabbFace::Bottom => aabb.max.y=aabb.min.y,
AabbFace::Front => aabb.max.z=aabb.min.z,
}
return aabb;
}
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
Aabb::normal(face)//this is wrong for scale
}
}
//need non-face (full model) variant for CanCollide false objects
//OR have a separate list from contacts for model intersection
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub struct RelativeCollision {
face: TreyMeshFace,//just an id
model: u32,//using id to avoid lifetimes
}
impl RelativeCollision {
pub fn mesh(&self,models:&Vec<ModelPhysics>) -> TreyMesh {
return models.get(self.model as usize).unwrap().face_mesh(self.face).clone()
}
pub fn normal(&self,models:&Vec<ModelPhysics>) -> glam::Vec3 {
return models.get(self.model as usize).unwrap().face_normal(self.face)
}
}
pub type TIME = i64;
impl Body {
pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self {
Self{
position,
velocity,
acceleration,
time: 0,
}
}
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
}
pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.velocity+self.acceleration*(dt as f32)
}
pub fn advance_time(&mut self, time: TIME){
self.position=self.extrapolated_position(time);
self.velocity=self.extrapolated_velocity(time);
self.time=time;
}
}
impl PhysicsState {
//tickless gaming
pub fn run(&mut self, time_limit:TIME){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time_limit) {//collect
//process
self.process_instruction(instruction);
//write hash lol
}
}
pub fn advance_time(&mut self, time: TIME){
self.body.advance_time(time);
self.time=time;
}
fn set_control(&mut self,control:u32,state:bool){
self.controls=if state{self.controls|control}else{self.controls&!control};
}
fn jump(&mut self){
self.grounded=false;//do I need this?
let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){
for contact in self.contacts.iter() {
let n=contact.normal(&self.models);
let d=velocity.dot(n);
if d<0f32{
(*velocity)-=d/n.length_squared()*n;
}
}
}
fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){
for contact in self.contacts.iter() {
let n=contact.normal(&self.models);
let d=acceleration.dot(n);
if d<0f32{
(*acceleration)-=d/n.length_squared()*n;
}
}
}
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
return Some(TimedInstruction{
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
//only poll the physics if there is a before and after mouse event
instruction:PhysicsInstruction::StrafeTick
});
}
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
fn refresh_walk_target(&mut self){
//calculate acceleration yada yada
if self.grounded{
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
let mut target_diff=v-self.body.velocity;
target_diff.y=0f32;
if target_diff==glam::Vec3::ZERO{
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.state=WalkEnum::Reached;
}else{
let accel=self.walk_accel.min(self.gravity.length()*self.friction);
let time_delta=target_diff.length()/accel;
let mut a=target_diff/time_delta;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME;
self.walk.state=WalkEnum::Transient;
}
}else{
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
}
}
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
//check if you have a valid walk state and create an instruction
if self.grounded{
match self.walk.state{
WalkEnum::Transient=>Some(TimedInstruction{
time:self.walk.target_time,
instruction:PhysicsInstruction::ReachWalkTargetVelocity
}),
WalkEnum::Reached=>None,
}
}else{
return None;
}
}
fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for vertex in Aabb::unit_vertices(){
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
}
aabb
}
fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_time=time_limit;
let mut exit_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh();
let (v,a)=(-self.body.velocity,self.body.acceleration);
//collect x
match collision_data.face {
AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Left);
break;
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.x+a.x*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Right);
break;
}
}
},
AabbFace::Left=>{
//generate event if v.x<0||a.x<0
if -v.x<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
AabbFace::Right=>{
//generate event if 0<v.x||0<a.x
if 0f32<(-v.x){
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
}
//collect y
match collision_data.face {
AabbFace::Left|AabbFace::Back|AabbFace::Right|AabbFace::Front=>{
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Bottom);
break;
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.y+a.y*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Top);
break;
}
}
},
AabbFace::Bottom=>{
//generate event if v.y<0||a.y<0
if -v.y<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
AabbFace::Top=>{
//generate event if 0<v.y||0<a.y
if 0f32<(-v.y){
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
}
//collect z
match collision_data.face {
AabbFace::Left|AabbFace::Bottom|AabbFace::Right|AabbFace::Top=>{
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Front);
break;
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.z+a.z*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Back);
break;
}
}
},
AabbFace::Front=>{
//generate event if v.z<0||a.z<0
if -v.z<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
AabbFace::Back=>{
//generate event if 0<v.z||0<a.z
if 0f32<(-v.z){
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
}
//generate instruction
if let Some(face) = exit_face{
return Some(TimedInstruction {
time: best_time,
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
})
}
None
}
fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t
let mut best_time=time_limit;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=self.models.get(model_id as usize).unwrap().mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Left);
break;
}
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Right);
break;
}
}
}
//collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
break;
}
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Top);
break;
}
}
}
//collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Front);
break;
}
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Back);
break;
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: best_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
None
}
}
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
//check for collision stop instructions with curent contacts
for collision_data in self.contacts.iter() {
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
}
//check for collision start instructions (against every part in the game with no optimization!!)
for i in 0..self.models.len() {
collector.collect(self.predict_collision_start(self.time,time_limit,i as u32));
}
if self.grounded {
//walk maintenance
collector.collect(self.next_walk_instruction());
}else{
//check to see when the next strafe tick is
collector.collect(self.next_strafe_instruction());
}
collector.instruction()
}
}
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
match &ins.instruction {
PhysicsInstruction::StrafeTick => (),
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),
_=>println!("{:?}",ins),
}
//selectively update body
match &ins.instruction {
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),//dodge time for mouse movement
PhysicsInstruction::Input(_)
|PhysicsInstruction::SetSpawnPosition(_)
|PhysicsInstruction::ReachWalkTargetVelocity
|PhysicsInstruction::CollisionStart(_)
|PhysicsInstruction::CollisionEnd(_)
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
}
match ins.instruction {
PhysicsInstruction::SetSpawnPosition(position)=>{
self.spawn_point=position;
}
PhysicsInstruction::CollisionStart(c) => {
//check ground
match &c.face {
AabbFace::Top => {
//ground
self.grounded=true;
},
_ => (),
}
self.contacts.insert(c);
//flatten v
let mut v=self.body.velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
if self.grounded&&self.controls&CONTROL_JUMP!=0{
self.jump();
}
self.refresh_walk_target();
},
PhysicsInstruction::CollisionEnd(c) => {
self.contacts.remove(&c);//remove contact before calling contact_constrain_acceleration
let mut a=self.gravity;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
//check ground
match &c.face {
AabbFace::Top => {
self.grounded=false;
},
_ => (),
}
self.refresh_walk_target();
},
PhysicsInstruction::StrafeTick => {
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let control_dir=camera_mat*get_control_dir(self.controls);
let d=self.body.velocity.dot(control_dir);
if d<self.mv {
let mut v=self.body.velocity+(self.mv-d)*control_dir;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
self.walk.state=WalkEnum::Reached;
},
PhysicsInstruction::Input(input_instruction) => {
let mut refresh_walk_target=false;
match input_instruction{
InputInstruction::MoveMouse(m) => {
self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0);
self.mouse_interpolation.move_mouse(self.time,m);
refresh_walk_target=true;
},
InputInstruction::MoveForward(s) => {
self.set_control(CONTROL_MOVEFORWARD,s);
refresh_walk_target=true;
},
InputInstruction::MoveLeft(s) => {
self.set_control(CONTROL_MOVELEFT,s);
refresh_walk_target=true;
},
InputInstruction::MoveBack(s) => {
self.set_control(CONTROL_MOVEBACK,s);
refresh_walk_target=true;
},
InputInstruction::MoveRight(s) => {
self.set_control(CONTROL_MOVERIGHT,s);
refresh_walk_target=true;
},
InputInstruction::MoveUp(s) => {
self.set_control(CONTROL_MOVEUP,s);
refresh_walk_target=true;
},
InputInstruction::MoveDown(s) => {
self.set_control(CONTROL_MOVEDOWN,s);
refresh_walk_target=true;
},
InputInstruction::Jump(s) => {
self.set_control(CONTROL_JUMP,s);
refresh_walk_target=true;
if self.grounded{
self.jump();
}
},
InputInstruction::Zoom(s) => {
self.set_control(CONTROL_ZOOM,s);
},
InputInstruction::Reset => {
//temp
self.body.position=self.spawn_point;
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
self.body.acceleration=self.gravity;
self.walk.state=WalkEnum::Reached;
self.grounded=false;
},
}
//calculate control dir
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let control_dir=camera_mat*get_control_dir(self.controls);
//calculate walk target velocity
if refresh_walk_target{
self.walk.target_velocity=self.walkspeed*control_dir;
self.refresh_walk_target();
}
},
}
}
}