219 lines
6.1 KiB
Rust

use crate::types::I32F32;
use crate::types::I256F256;
#[test]
fn you_can_add_numbers(){
let a=I256F256::from((3i128*2).pow(4));
assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2));
}
#[test]
fn to_f32(){
let a=I256F256::from(1)>>2;
let f:f32=a.into();
assert_eq!(f,0.25f32);
let f:f32=(-a).into();
assert_eq!(f,-0.25f32);
let a=I256F256::from(0);
let f:f32=(-a).into();
assert_eq!(f,0f32);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f32=a.into();
assert_eq!(f,237946589723468975f32*2.0f32.powi(16));
}
#[test]
fn to_f64(){
let a=I256F256::from(1)>>2;
let f:f64=a.into();
assert_eq!(f,0.25f64);
let f:f64=(-a).into();
assert_eq!(f,-0.25f64);
let a=I256F256::from(0);
let f:f64=(-a).into();
assert_eq!(f,0f64);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f64=a.into();
assert_eq!(f,237946589723468975f64*2.0f64.powi(16));
}
#[test]
fn from_f32(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f32.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f32).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f32*2.0f32.powi(16)).try_into();
assert_eq!(b,Ok(a));
//I32F32::MAX into f32 is truncated into this value
let a=I32F32::raw(0b111111111111111111111111000000000000000000000000000000000000000i64);
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MAX).try_into();
assert_eq!(b,Ok(a));
//I32F32::MIN hits a special case since it's not representable as a positive signed integer
//TODO: don't return an overflow because this is technically possible
let a=I32F32::MIN;
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MIN).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
//16 is within the 24 bits of float precision
let b:Result<I32F32,_>=Into::<f32>::into(-I32F32::MIN.fix_2()).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
let b:Result<I32F32,_>=f32::MIN_POSITIVE.try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Underflow));
//test many cases
for i in 0..64{
let a=crate::fixed::Fixed::<2,64>::raw_digit(0b111111111111111111111111000000000000000000000000000000000000000i64)<<i;
let f:f32=a.into();
let b:Result<crate::fixed::Fixed<2,64>,_>=f.try_into();
assert_eq!(b,Ok(a));
}
}
#[test]
fn from_f64(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f64.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f64).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f64*2.0f64.powi(16)).try_into();
assert_eq!(b,Ok(a));
}
#[test]
fn you_can_shr_numbers(){
let a=I32F32::from(4);
assert_eq!(a>>1,I32F32::from(2));
}
#[test]
fn test_wide_mul(){
let a=I32F32::ONE;
let aa=a.wide_mul_1_1(a);
assert_eq!(aa,crate::types::I64F64::ONE);
}
#[test]
fn test_wide_div(){
let a=I32F32::ONE*4;
let b=I32F32::ONE*2;
let wide_a=a.wide_mul_1_1(I32F32::ONE);
let wide_b=b.wide_mul_1_1(I32F32::ONE);
let ab=a.wide_div_1_1(b);
assert_eq!(ab,crate::types::I64F64::ONE*2);
let wab=wide_a.wide_div_2_1(b);
assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2);
let awb=a.wide_div_1_2(wide_b);
assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2);
}
#[test]
fn test_wide_mul_repeated() {
let a=I32F32::from(2);
let b=I32F32::from(3);
let w1=a.wide_mul_1_1(b);
let w2=w1.wide_mul_2_2(w1);
let w3=w2.wide_mul_4_4(w2);
assert_eq!(w3,I256F256::from((3i128*2).pow(4)));
}
#[test]
fn test_bint(){
let a=I32F32::ONE;
assert_eq!(a*2,I32F32::from(2));
}
#[test]
fn test_fix(){
assert_eq!(I32F32::ONE.fix_8(),I256F256::ONE);
assert_eq!(I32F32::ONE,I256F256::ONE.fix_1());
assert_eq!(I32F32::NEG_ONE.fix_8(),I256F256::NEG_ONE);
assert_eq!(I32F32::NEG_ONE,I256F256::NEG_ONE.fix_1());
}
#[test]
fn test_sqrt(){
let a=I32F32::ONE*4;
assert_eq!(a.sqrt(),I32F32::from(2));
}
#[test]
fn test_sqrt_zero(){
let a=I32F32::ZERO;
assert_eq!(a.sqrt(),I32F32::ZERO);
}
#[test]
fn test_sqrt_low(){
let a=I32F32::HALF;
let b=a.fixed_mul(a);
assert_eq!(b.sqrt(),a);
}
fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{
//GIMME THEM BITS BOY
let &[bits]=n.to_bits().to_bits().digits();
let ibits=bits as i64;
let f=(ibits as f64)/((1u64<<32) as f64);
let f_ans=f.sqrt();
let i=(f_ans*((1u64<<32) as f64)) as i64;
let r=I32F32::from_bits(bnum::BInt::<1>::from(i));
//mimic the behaviour of the algorithm,
//return the result if it truncates to the exact answer
if (r+I32F32::EPSILON).wide_mul_1_1(r+I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r+I32F32::EPSILON;
}
if (r-I32F32::EPSILON).wide_mul_1_1(r-I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r-I32F32::EPSILON;
}
return r;
}
fn test_exact(n:I32F32){
assert_eq!(n.sqrt(),find_equiv_sqrt_via_f64(n));
}
#[test]
fn test_sqrt_exact(){
//43
for i in 0..((i64::MAX as f32).ln() as u32){
let n=I32F32::from_bits(bnum::BInt::<1>::from((i as f32).exp() as i64));
test_exact(n);
}
}
#[test]
fn test_sqrt_max(){
let a=I32F32::MAX;
test_exact(a);
}
#[test]
#[cfg(all(feature="zeroes",not(feature="deferred-division")))]
fn test_zeroes_normal(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE,I32F32::ONE]));
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE*3,I32F32::ONE*2,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE*3,I32F32::ONE]));
}
#[test]
#[cfg(all(feature="zeroes",feature="deferred-division"))]
fn test_zeroes_deferred_division(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(
zeroes,
arrayvec::ArrayVec::from_iter([
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::NEG_ONE*2),
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::ONE*2),
])
);
}