use std::borrow::Cow; use std::collections::{HashSet,HashMap}; use strafesnet_common::map; use strafesnet_common::integer; use strafesnet_common::model::{self, ColorId, NormalId, PolygonIter, PositionId, RenderConfigId, TextureCoordinateId, VertexId}; use wgpu::{util::DeviceExt,AstcBlock,AstcChannel}; use crate::model_graphics::{self,IndexedGraphicsMeshOwnedRenderConfig,IndexedGraphicsMeshOwnedRenderConfigId,GraphicsMeshOwnedRenderConfig,GraphicsModelColor4,GraphicsModelOwned,GraphicsVertex}; #[derive(Clone)] pub struct GraphicsModelUpdate{ transform:Option, color:Option, } struct Indices{ count:u32, buf:wgpu::Buffer, format:wgpu::IndexFormat, } impl Indices{ fn new(device:&wgpu::Device,indices:&Vec,format:wgpu::IndexFormat)->Self{ Self{ buf:device.create_buffer_init(&wgpu::util::BufferInitDescriptor{ label:Some("Index"), contents:bytemuck::cast_slice(indices), usage:wgpu::BufferUsages::INDEX, }), count:indices.len() as u32, format, } } } struct GraphicsModel{ indices:Indices, model_buf:wgpu::Buffer, vertex_buf:wgpu::Buffer, bind_group:wgpu::BindGroup, instance_count:u32, } struct GraphicsSamplers{ repeat:wgpu::Sampler, } struct GraphicsBindGroupLayouts{ model:wgpu::BindGroupLayout, } struct GraphicsBindGroups{ camera:wgpu::BindGroup, skybox_texture:wgpu::BindGroup, } struct GraphicsPipelines{ skybox:wgpu::RenderPipeline, model:wgpu::RenderPipeline, } struct GraphicsCamera{ screen_size:glam::UVec2, fov:glam::Vec2,//slope //camera angles and such are extrapolated and passed in every time } #[inline] fn perspective_rh(fov_x_slope:f32,fov_y_slope:f32,z_near:f32,z_far:f32)->glam::Mat4{ //glam_assert!(z_near > 0.0 && z_far > 0.0); let r=z_far / (z_near-z_far); glam::Mat4::from_cols( glam::Vec4::new(1.0/fov_x_slope,0.0,0.0,0.0), glam::Vec4::new(0.0,1.0/fov_y_slope,0.0,0.0), glam::Vec4::new(0.0,0.0,r,-1.0), glam::Vec4::new(0.0,0.0,r * z_near,0.0), ) } impl GraphicsCamera{ pub fn proj(&self)->glam::Mat4{ perspective_rh(self.fov.x,self.fov.y,0.4,4000.0) } pub fn world(&self,pos:glam::Vec3,angles:glam::Vec2)->glam::Mat4{ //f32 good enough for view matrix glam::Mat4::from_translation(pos) * glam::Mat4::from_euler(glam::EulerRot::YXZ,angles.x,angles.y,0f32) } pub fn to_uniform_data(&self,(pos,angles):(glam::Vec3,glam::Vec2))->[f32; 16 * 4]{ let proj=self.proj(); let proj_inv=proj.inverse(); let view_inv=self.world(pos,angles); let view=view_inv.inverse(); let mut raw=[0f32; 16 * 4]; raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]); raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]); raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view)[..]); raw[48..64].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]); raw } } impl std::default::Default for GraphicsCamera{ fn default()->Self{ Self{ screen_size:glam::UVec2::ONE, fov:glam::Vec2::ONE, } } } pub struct GraphicsState{ pipelines:GraphicsPipelines, bind_groups:GraphicsBindGroups, bind_group_layouts:GraphicsBindGroupLayouts, samplers:GraphicsSamplers, camera:GraphicsCamera, camera_buf:wgpu::Buffer, temp_squid_texture_view:wgpu::TextureView, models:Vec, depth_view:wgpu::TextureView, staging_belt:wgpu::util::StagingBelt, } impl GraphicsState{ const DEPTH_FORMAT:wgpu::TextureFormat=wgpu::TextureFormat::Depth24Plus; fn create_depth_texture( config:&wgpu::SurfaceConfiguration, device:&wgpu::Device, )->wgpu::TextureView{ let depth_texture=device.create_texture(&wgpu::TextureDescriptor{ size:wgpu::Extent3d{ width:config.width, height:config.height, depth_or_array_layers:1, }, mip_level_count:1, sample_count:1, dimension:wgpu::TextureDimension::D2, format:Self::DEPTH_FORMAT, usage:wgpu::TextureUsages::RENDER_ATTACHMENT, label:None, view_formats:&[], }); depth_texture.create_view(&wgpu::TextureViewDescriptor::default()) } pub fn clear(&mut self){ self.models.clear(); } pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){ self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2(); } pub fn generate_models(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,map:&map::CompleteMap){ //generate texture view per texture let texture_views:HashMap=map.textures.iter().enumerate().filter_map(|(texture_id,texture_data)|{ let texture_id=model::TextureId::new(texture_id as u32); let image=ddsfile::Dds::read(std::io::Cursor::new(texture_data)).ok()?; let (mut width,mut height)=(image.get_width(),image.get_height()); let format=match image.header10.unwrap().dxgi_format{ ddsfile::DxgiFormat::R8G8B8A8_UNorm_sRGB=>wgpu::TextureFormat::Rgba8UnormSrgb, ddsfile::DxgiFormat::BC7_UNorm_sRGB =>{ //floor(w,4),should be ceil(w,4) width=width/4*4; height=height/4*4; wgpu::TextureFormat::Bc7RgbaUnormSrgb }, other=>{ println!("unsupported texture format{:?}",other); return None; }, }; let size=wgpu::Extent3d{ width, height, depth_or_array_layers:1, }; let layer_size=wgpu::Extent3d{ depth_or_array_layers:1, ..size }; let max_mips=layer_size.max_mips(wgpu::TextureDimension::D2); let texture=device.create_texture_with_data( queue, &wgpu::TextureDescriptor{ size, mip_level_count:max_mips, sample_count:1, dimension:wgpu::TextureDimension::D2, format, usage:wgpu::TextureUsages::TEXTURE_BINDING|wgpu::TextureUsages::COPY_DST, label:Some(format!("Texture{}",texture_id.get()).as_str()), view_formats:&[], }, wgpu::util::TextureDataOrder::LayerMajor, &image.data, ); Some((texture_id,texture.create_view(&wgpu::TextureViewDescriptor{ label:Some(format!("Texture{} View",texture_id.get()).as_str()), dimension:Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }))) }).collect(); let num_textures=texture_views.len(); //split groups with different textures into separate models //the models received here are supposed to be tightly packed,i.e. no code needs to check if two models are using the same groups. let indexed_models_len=map.models.len(); //models split into graphics_group.RenderConfigId let mut owned_mesh_id_from_mesh_id_render_config_id:HashMap>=HashMap::new(); let mut unique_render_config_models:Vec=Vec::with_capacity(indexed_models_len); for model in &map.models{ //wow let instance=GraphicsModelOwned{ transform:model.transform.into(), normal_transform:Into::::into(model.transform.matrix3).inverse().transpose(), color:GraphicsModelColor4::new(model.color), }; //get or create owned mesh map let owned_mesh_map=owned_mesh_id_from_mesh_id_render_config_id .entry(model.mesh).or_insert_with(||{ let mut owned_mesh_map=HashMap::new(); //add mesh if renderid never before seen for this model //add instance //convert Model into GraphicsModelOwned //check each group, if it's using a new render config then make a new clone of the model if let Some(mesh)=map.meshes.get(model.mesh.get() as usize){ for graphics_group in mesh.graphics_groups.iter(){ //get or create owned mesh let owned_mesh_id=owned_mesh_map .entry(graphics_group.render).or_insert_with(||{ //create let owned_mesh_id=IndexedGraphicsMeshOwnedRenderConfigId::new(unique_render_config_models.len() as u32); unique_render_config_models.push(IndexedGraphicsMeshOwnedRenderConfig{ unique_pos:mesh.unique_pos.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_tex:mesh.unique_tex.iter().map(|v|*v.as_ref()).collect(), unique_normal:mesh.unique_normal.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_color:mesh.unique_color.iter().map(|v|*v.as_ref()).collect(), unique_vertices:mesh.unique_vertices.clone(), render_config:graphics_group.render, polys:model::PolygonGroup::PolygonList(model::PolygonList::new(Vec::new())), instances:Vec::new(), }); owned_mesh_id }); let owned_mesh=unique_render_config_models.get_mut(owned_mesh_id.get() as usize).unwrap(); match &mut owned_mesh.polys{ model::PolygonGroup::PolygonList(polygon_list)=>polygon_list.extend( graphics_group.groups.iter().flat_map(|polygon_group_id|{ mesh.polygon_groups[polygon_group_id.get() as usize].polys() }) .map(|vertex_id_slice| vertex_id_slice.to_vec() ) ), } } } owned_mesh_map }); for owned_mesh_id in owned_mesh_map.values(){ let owned_mesh=unique_render_config_models.get_mut(owned_mesh_id.get() as usize).unwrap(); let render_config=&map.render_configs[owned_mesh.render_config.get() as usize]; if model.color.w==0.0&&render_config.texture.is_none(){ continue; } owned_mesh.instances.push(instance.clone()); } } //check every model to see if it's using the same (texture,color) but has few instances,if it is combine it into one model //1. collect unique instances of texture and color,note model id //2. for each model id,check if removing it from the pool decreases both the model count and instance count by more than one //3. transpose all models that stay in the set //best plan:benchmark set_bind_group,set_vertex_buffer,set_index_buffer and draw_indexed //check if the estimated render performance is better by transposing multiple model instances into one model instance //for now:just deduplicate single models... let mut deduplicated_models=Vec::with_capacity(indexed_models_len);//use indexed_models_len because the list will likely get smaller instead of bigger let mut unique_texture_color=HashMap::new();//texture->color->vec![(model_id,instance_id)] for (model_id,model) in unique_render_config_models.iter().enumerate(){ //for now:filter out models with more than one instance if 1=model.unique_pos.iter().map(|untransformed_pos|{ let pos=instance.transform.transform_point3(glam::Vec3::from_array(untransformed_pos.clone())).to_array(); let h=bytemuck::cast::<[f32;3],[u32;3]>(pos); PositionId::new(*pos_id_from.entry(h).or_insert_with(||{ let pos_id=unique_pos.len(); unique_pos.push(pos); pos_id }) as u32) }).collect(); let map_tex_id:Vec=model.unique_tex.iter().map(|&tex|{ let h=bytemuck::cast::<[f32;2],[u32;2]>(tex); TextureCoordinateId::new(*tex_id_from.entry(h).or_insert_with(||{ let tex_id=unique_tex.len(); unique_tex.push(tex); tex_id }) as u32) }).collect(); let map_normal_id:Vec=model.unique_normal.iter().map(|untransformed_normal|{ let normal=(instance.normal_transform*glam::Vec3::from_array(untransformed_normal.clone())).to_array(); let h=bytemuck::cast::<[f32;3],[u32;3]>(normal); NormalId::new(*normal_id_from.entry(h).or_insert_with(||{ let normal_id=unique_normal.len(); unique_normal.push(normal); normal_id }) as u32) }).collect(); let map_color_id:Vec=model.unique_color.iter().map(|&color|{ let h=bytemuck::cast::<[f32;4],[u32;4]>(color); ColorId::new(*color_id_from.entry(h).or_insert_with(||{ let color_id=unique_color.len(); unique_color.push(color); color_id }) as u32) }).collect(); //map the indexed vertices onto new indices //creating the vertex map is slightly different because the vertices are directly hashable let map_vertex_id:Vec=model.unique_vertices.iter().map(|unmapped_vertex|{ let vertex=model::IndexedVertex{ pos:map_pos_id[unmapped_vertex.pos.get() as usize], tex:map_tex_id[unmapped_vertex.tex.get() as usize], normal:map_normal_id[unmapped_vertex.normal.get() as usize], color:map_color_id[unmapped_vertex.color.get() as usize], }; VertexId::new(*vertex_id_from.entry(vertex.clone()).or_insert_with(||{ let vertex_id=unique_vertices.len(); unique_vertices.push(vertex); vertex_id }) as u32) }).collect(); polys.extend(model.polys.polys().map(|poly| poly.iter().map(|vertex_id| map_vertex_id[vertex_id.get() as usize] ).collect() )); } //push model into dedup deduplicated_models.push(IndexedGraphicsMeshOwnedRenderConfig{ unique_pos, unique_tex, unique_normal, unique_color, unique_vertices, render_config, polys:model::PolygonGroup::PolygonList(model::PolygonList::new(polys)), instances:vec![GraphicsModelOwned{ transform:glam::Mat4::IDENTITY, normal_transform:glam::Mat3::IDENTITY, color }], }); } } } //fill untouched models for (model_id,model) in unique_render_config_models.into_iter().enumerate(){ if !selected_model_instances.contains(&model_id){ deduplicated_models.push(model); } } //de-index models let deduplicated_models_len=deduplicated_models.len(); let models:Vec=deduplicated_models.into_iter().map(|model|{ let mut vertices=Vec::new(); let mut index_from_vertex=HashMap::new();//:: //this mut be combined in a more complex way if the models use different render patterns per group let mut indices=Vec::new(); for poly in model.polys.polys(){ for end_index in 2..poly.len(){ for index in [0,end_index-1,end_index]{ let vertex_index=poly[index]; indices.push(*index_from_vertex.entry(vertex_index).or_insert_with(||{ let i=vertices.len(); let vertex=&model.unique_vertices[vertex_index.get() as usize]; vertices.push(GraphicsVertex{ pos:model.unique_pos[vertex.pos.get() as usize], tex:model.unique_tex[vertex.tex.get() as usize], normal:model.unique_normal[vertex.normal.get() as usize], color:model.unique_color[vertex.color.get() as usize], }); i })); } } } GraphicsMeshOwnedRenderConfig{ instances:model.instances, indices:if (u32::MAX as usize)Indices::new(device,indices,wgpu::IndexFormat::Uint32), model_graphics::Indices::U16(indices)=>Indices::new(device,indices,wgpu::IndexFormat::Uint16), }, bind_group, model_buf, }); } } println!("Texture References={}",num_textures); println!("Textures Loaded={}",texture_views.len()); println!("Indexed Models={}",indexed_models_len); println!("Deduplicated Models={}",deduplicated_models_len); println!("Graphics Objects:{}",self.models.len()); println!("Graphics Instances:{}",instance_count); } pub fn new( device:&wgpu::Device, queue:&wgpu::Queue, config:&wgpu::SurfaceConfiguration, )->Self{ let camera_bind_group_layout=device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor{ label:None, entries:&[ wgpu::BindGroupLayoutEntry{ binding:0, visibility:wgpu::ShaderStages::VERTEX, ty:wgpu::BindingType::Buffer{ ty:wgpu::BufferBindingType::Uniform, has_dynamic_offset:false, min_binding_size:None, }, count:None, }, ], }); let skybox_texture_bind_group_layout=device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor{ label:Some("Skybox Texture Bind Group Layout"), entries:&[ wgpu::BindGroupLayoutEntry{ binding:0, visibility:wgpu::ShaderStages::FRAGMENT, ty:wgpu::BindingType::Texture{ sample_type:wgpu::TextureSampleType::Float{filterable:true}, multisampled:false, view_dimension:wgpu::TextureViewDimension::Cube, }, count:None, }, wgpu::BindGroupLayoutEntry{ binding:1, visibility:wgpu::ShaderStages::FRAGMENT, ty:wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count:None, }, ], }); let model_bind_group_layout=device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor{ label:Some("Model Bind Group Layout"), entries:&[ wgpu::BindGroupLayoutEntry{ binding:0, visibility:wgpu::ShaderStages::VERTEX, ty:wgpu::BindingType::Buffer{ ty:wgpu::BufferBindingType::Uniform, has_dynamic_offset:false, min_binding_size:None, }, count:None, }, wgpu::BindGroupLayoutEntry{ binding:1, visibility:wgpu::ShaderStages::FRAGMENT, ty:wgpu::BindingType::Texture{ sample_type:wgpu::TextureSampleType::Float{filterable:true}, multisampled:false, view_dimension:wgpu::TextureViewDimension::D2, }, count:None, }, wgpu::BindGroupLayoutEntry{ binding:2, visibility:wgpu::ShaderStages::FRAGMENT, ty:wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count:None, }, ], }); let clamp_sampler=device.create_sampler(&wgpu::SamplerDescriptor{ label:Some("Clamp Sampler"), address_mode_u:wgpu::AddressMode::ClampToEdge, address_mode_v:wgpu::AddressMode::ClampToEdge, address_mode_w:wgpu::AddressMode::ClampToEdge, mag_filter:wgpu::FilterMode::Linear, min_filter:wgpu::FilterMode::Linear, mipmap_filter:wgpu::FilterMode::Linear, ..Default::default() }); let repeat_sampler=device.create_sampler(&wgpu::SamplerDescriptor{ label:Some("Repeat Sampler"), address_mode_u:wgpu::AddressMode::Repeat, address_mode_v:wgpu::AddressMode::Repeat, address_mode_w:wgpu::AddressMode::Repeat, mag_filter:wgpu::FilterMode::Linear, min_filter:wgpu::FilterMode::Linear, mipmap_filter:wgpu::FilterMode::Linear, anisotropy_clamp:16, ..Default::default() }); // Create the render pipeline let shader=device.create_shader_module(wgpu::ShaderModuleDescriptor{ label:None, source:wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))), }); //load textures let device_features=device.features(); let skybox_texture_view={ let skybox_format=if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC){ println!("Using ASTC"); wgpu::TextureFormat::Astc{ block:AstcBlock::B4x4, channel:AstcChannel::UnormSrgb, } }else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2){ println!("Using ETC2"); wgpu::TextureFormat::Etc2Rgb8UnormSrgb }else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC){ println!("Using BC"); wgpu::TextureFormat::Bc1RgbaUnormSrgb }else{ println!("Using plain"); wgpu::TextureFormat::Bgra8UnormSrgb }; let bytes=match skybox_format{ wgpu::TextureFormat::Astc{ block:AstcBlock::B4x4, channel:AstcChannel::UnormSrgb, }=>&include_bytes!("../images/astc.dds")[..], wgpu::TextureFormat::Etc2Rgb8UnormSrgb=>&include_bytes!("../images/etc2.dds")[..], wgpu::TextureFormat::Bc1RgbaUnormSrgb=>&include_bytes!("../images/bc1.dds")[..], wgpu::TextureFormat::Bgra8UnormSrgb=>&include_bytes!("../images/bgra.dds")[..], _=>unreachable!(), }; let skybox_image=ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size=wgpu::Extent3d{ width:skybox_image.get_width(), height:skybox_image.get_height(), depth_or_array_layers:6, }; let layer_size=wgpu::Extent3d{ depth_or_array_layers:1, ..size }; let max_mips=layer_size.max_mips(wgpu::TextureDimension::D2); let skybox_texture=device.create_texture_with_data( queue, &wgpu::TextureDescriptor{ size, mip_level_count:max_mips, sample_count:1, dimension:wgpu::TextureDimension::D2, format:skybox_format, usage:wgpu::TextureUsages::TEXTURE_BINDING|wgpu::TextureUsages::COPY_DST, label:Some("Skybox Texture"), view_formats:&[], }, wgpu::util::TextureDataOrder::LayerMajor, &skybox_image.data, ); skybox_texture.create_view(&wgpu::TextureViewDescriptor{ label:Some("Skybox Texture View"), dimension:Some(wgpu::TextureViewDimension::Cube), ..wgpu::TextureViewDescriptor::default() }) }; //squid let squid_texture_view={ let bytes=include_bytes!("../images/squid.dds"); let image=ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size=wgpu::Extent3d{ width:image.get_width(), height:image.get_height(), depth_or_array_layers:1, }; let layer_size=wgpu::Extent3d{ depth_or_array_layers:1, ..size }; let max_mips=layer_size.max_mips(wgpu::TextureDimension::D2); let texture=device.create_texture_with_data( queue, &wgpu::TextureDescriptor{ size, mip_level_count:max_mips, sample_count:1, dimension:wgpu::TextureDimension::D2, format:wgpu::TextureFormat::Bc7RgbaUnorm, usage:wgpu::TextureUsages::TEXTURE_BINDING|wgpu::TextureUsages::COPY_DST, label:Some("Squid Texture"), view_formats:&[], }, wgpu::util::TextureDataOrder::LayerMajor, &image.data, ); texture.create_view(&wgpu::TextureViewDescriptor{ label:Some("Squid Texture View"), dimension:Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }) }; let model_pipeline_layout=device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor{ label:None, bind_group_layouts:&[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, &model_bind_group_layout, ], push_constant_ranges:&[], }); let sky_pipeline_layout=device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor{ label:None, bind_group_layouts:&[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, ], push_constant_ranges:&[], }); // Create the render pipelines let sky_pipeline=device.create_render_pipeline(&wgpu::RenderPipelineDescriptor{ label:Some("Sky Pipeline"), layout:Some(&sky_pipeline_layout), vertex:wgpu::VertexState{ module:&shader, entry_point:"vs_sky", buffers:&[], }, fragment:Some(wgpu::FragmentState{ module:&shader, entry_point:"fs_sky", targets:&[Some(config.view_formats[0].into())], }), primitive:wgpu::PrimitiveState{ front_face:wgpu::FrontFace::Cw, ..Default::default() }, depth_stencil:Some(wgpu::DepthStencilState{ format:Self::DEPTH_FORMAT, depth_write_enabled:false, depth_compare:wgpu::CompareFunction::LessEqual, stencil:wgpu::StencilState::default(), bias:wgpu::DepthBiasState::default(), }), multisample:wgpu::MultisampleState::default(), multiview:None, }); let model_pipeline=device.create_render_pipeline(&wgpu::RenderPipelineDescriptor{ label:Some("Model Pipeline"), layout:Some(&model_pipeline_layout), vertex:wgpu::VertexState{ module:&shader, entry_point:"vs_entity_texture", buffers:&[wgpu::VertexBufferLayout{ array_stride:std::mem::size_of::() as wgpu::BufferAddress, step_mode:wgpu::VertexStepMode::Vertex, attributes:&wgpu::vertex_attr_array![0=>Float32x3,1=>Float32x2,2=>Float32x3,3=>Float32x4], }], }, fragment:Some(wgpu::FragmentState{ module:&shader, entry_point:"fs_entity_texture", targets:&[Some(config.view_formats[0].into())], }), primitive:wgpu::PrimitiveState{ front_face:wgpu::FrontFace::Cw, cull_mode:Some(wgpu::Face::Front), ..Default::default() }, depth_stencil:Some(wgpu::DepthStencilState{ format:Self::DEPTH_FORMAT, depth_write_enabled:true, depth_compare:wgpu::CompareFunction::LessEqual, stencil:wgpu::StencilState::default(), bias:wgpu::DepthBiasState::default(), }), multisample:wgpu::MultisampleState::default(), multiview:None, }); let camera=GraphicsCamera::default(); let camera_uniforms=camera.to_uniform_data(crate::physics::PhysicsOutputState::default().extrapolate(crate::physics::MouseState::default())); let camera_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{ label:Some("Camera"), contents:bytemuck::cast_slice(&camera_uniforms), usage:wgpu::BufferUsages::UNIFORM|wgpu::BufferUsages::COPY_DST, }); let camera_bind_group=device.create_bind_group(&wgpu::BindGroupDescriptor{ layout:&camera_bind_group_layout, entries:&[ wgpu::BindGroupEntry{ binding:0, resource:camera_buf.as_entire_binding(), }, ], label:Some("Camera"), }); let skybox_texture_bind_group=device.create_bind_group(&wgpu::BindGroupDescriptor{ layout:&skybox_texture_bind_group_layout, entries:&[ wgpu::BindGroupEntry{ binding:0, resource:wgpu::BindingResource::TextureView(&skybox_texture_view), }, wgpu::BindGroupEntry{ binding:1, resource:wgpu::BindingResource::Sampler(&clamp_sampler), }, ], label:Some("Sky Texture"), }); let depth_view=Self::create_depth_texture(config,device); Self{ pipelines:GraphicsPipelines{ skybox:sky_pipeline, model:model_pipeline }, bind_groups:GraphicsBindGroups{ camera:camera_bind_group, skybox_texture:skybox_texture_bind_group, }, camera, camera_buf, models:Vec::new(), depth_view, staging_belt:wgpu::util::StagingBelt::new(0x100), bind_group_layouts:GraphicsBindGroupLayouts{model:model_bind_group_layout}, samplers:GraphicsSamplers{repeat:repeat_sampler}, temp_squid_texture_view:squid_texture_view, } } pub fn resize( &mut self, device:&wgpu::Device, config:&wgpu::SurfaceConfiguration, user_settings:&crate::settings::UserSettings, ){ self.depth_view=Self::create_depth_texture(config,device); self.camera.screen_size=glam::uvec2(config.width,config.height); self.load_user_settings(user_settings); } pub fn render( &mut self, view:&wgpu::TextureView, device:&wgpu::Device, queue:&wgpu::Queue, physics_output:crate::physics::PhysicsOutputState, predicted_time:integer::Time, mouse_pos:glam::IVec2, ){ //TODO:use scheduled frame times to create beautiful smoothing simulation physics extrapolation assuming no input let mut encoder=device.create_command_encoder(&wgpu::CommandEncoderDescriptor{label:None}); // update rotation let camera_uniforms=self.camera.to_uniform_data(physics_output.extrapolate(crate::physics::MouseState{pos:mouse_pos,time:predicted_time})); self.staging_belt .write_buffer( &mut encoder, &self.camera_buf, 0, wgpu::BufferSize::new((camera_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&camera_uniforms)); //This code only needs to run when the uniforms change /* for model in self.models.iter(){ let model_uniforms=get_instances_buffer_data(&model.instances); self.staging_belt .write_buffer( &mut encoder, &model.model_buf,//description of where data will be written when command is executed 0,//offset in staging belt? wgpu::BufferSize::new((model_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&model_uniforms)); } */ self.staging_belt.finish(); { let mut rpass=encoder.begin_render_pass(&wgpu::RenderPassDescriptor{ label:None, color_attachments:&[Some(wgpu::RenderPassColorAttachment{ view, resolve_target:None, ops:wgpu::Operations{ load:wgpu::LoadOp::Clear(wgpu::Color{ r:0.1, g:0.2, b:0.3, a:1.0, }), store:wgpu::StoreOp::Store, }, })], depth_stencil_attachment:Some(wgpu::RenderPassDepthStencilAttachment{ view:&self.depth_view, depth_ops:Some(wgpu::Operations{ load:wgpu::LoadOp::Clear(1.0), store:wgpu::StoreOp::Discard, }), stencil_ops:None, }), timestamp_writes:Default::default(), occlusion_query_set:Default::default(), }); rpass.set_bind_group(0,&self.bind_groups.camera,&[]); rpass.set_bind_group(1,&self.bind_groups.skybox_texture,&[]); rpass.set_pipeline(&self.pipelines.model); for model in &self.models{ rpass.set_bind_group(2,&model.bind_group,&[]); rpass.set_vertex_buffer(0,model.vertex_buf.slice(..)); rpass.set_index_buffer(model.indices.buf.slice(..),model.indices.format); //TODO: loop over triangle strips rpass.draw_indexed(0..model.indices.count,0,0..model.instance_count); } rpass.set_pipeline(&self.pipelines.skybox); rpass.draw(0..3,0..1); } queue.submit(std::iter::once(encoder.finish())); self.staging_belt.recall(); } } const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::(); const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4; fn get_instances_buffer_data(instances:&[GraphicsModelOwned])->Vec{ let mut raw=Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len()); for mi in instances{ //model transform raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]); //normal transform raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis)); raw.extend_from_slice(&[0.0]); //color raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get())); } raw }