use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2}; #[derive(Debug)] pub enum PhysicsInstruction { CollisionStart(RelativeCollision), CollisionEnd(RelativeCollision), StrafeTick, ReachWalkTargetVelocity, // Water, // Spawn( // Option, // bool,//true = Trigger; false = teleport // bool,//true = Force // ) //InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it) Input(InputInstruction), //temp SetSpawnPosition(glam::Vec3), } #[derive(Debug)] pub enum InputInstruction { MoveMouse(glam::IVec2), MoveForward(bool), MoveLeft(bool), MoveBack(bool), MoveRight(bool), MoveUp(bool), MoveDown(bool), Jump(bool), Zoom(bool), Reset, Idle, //Idle: there were no input events, but the simulation is safe to advance to this timestep //for interpolation / networking / playback reasons, most playback heads will always want //to be 1 instruction ahead to generate the next state for interpolation. } pub struct Body { position: glam::Vec3,//I64 where 2^32 = 1 u velocity: glam::Vec3,//I64 where 2^32 = 1 u/s acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s time: TIME,//nanoseconds x xxxxD! } trait MyHash{ fn hash(&self) -> u64; } impl MyHash for Body { fn hash(&self) -> u64 { let mut hasher=std::collections::hash_map::DefaultHasher::new(); for &el in self.position.as_ref().iter() { std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice()); } for &el in self.velocity.as_ref().iter() { std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice()); } for &el in self.acceleration.as_ref().iter() { std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice()); } std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice()); return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid } } pub enum MoveRestriction { Air, Water, Ground, Ladder,//multiple ladders how } /* enum InputInstruction { } struct InputState { } impl InputState { pub fn get_control(&self,control:u32) -> bool { self.controls&control!=0 } } impl crate::instruction::InstructionEmitter for InputState{ fn next_instruction(&self, time_limit:crate::body::TIME) -> Option> { //this is polled by PhysicsState for actions like Jump //no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed. self.queue.get(0) } } impl crate::instruction::InstructionConsumer for InputState{ fn process_instruction(&mut self,ins:TimedInstruction){ //add to queue self.queue.push(ins); } } */ enum MouseInterpolation { First,//just checks the last value Lerp,//lerps between } //hey dumbass just use a delta pub struct MouseInterpolationState { interpolation: MouseInterpolation, time0: TIME, time1: TIME, mouse0: glam::IVec2, mouse1: glam::IVec2, } impl MouseInterpolationState { pub fn new() -> Self { Self { interpolation:MouseInterpolation::First, time0:0, time1:1,//ONE NANOSECOND!!!! avoid divide by zero mouse0:glam::IVec2::ZERO, mouse1:glam::IVec2::ZERO, } } pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){ self.time0=self.time1; self.mouse0=self.mouse1; self.time1=time; self.mouse1=self.mouse1+delta; } pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 { match self.interpolation { MouseInterpolation::First => self.mouse0, MouseInterpolation::Lerp => { let m0=self.mouse0.as_i64vec2(); let m1=self.mouse1.as_i64vec2(); //these are deltas let t1t=(self.time1-time) as i64; let tt0=(time-self.time0) as i64; let dt=(self.time1-self.time0) as i64; ((m0*t1t+m1*tt0)/dt).as_ivec2() } } } } pub enum WalkEnum{ Reached, Transient, } pub struct WalkState { pub target_velocity: glam::Vec3, pub target_time: TIME, pub state: WalkEnum, } impl WalkState { pub fn new() -> Self { Self{ target_velocity:glam::Vec3::ZERO, target_time:0, state:WalkEnum::Reached, } } } // Note: we use the Y=up coordinate space in this example. pub struct Camera { offset: glam::Vec3, angles: glam::DVec2,//YAW AND THEN PITCH //punch: glam::Vec3, //punch_velocity: glam::Vec3, fov: glam::Vec2,//slope sensitivity: glam::DVec2, time: TIME, } #[inline] fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 { let (sina, cosa) = angle.sin_cos(); glam::Mat3::from_cols( glam::Vec3::new(cosa as f32, 0.0, -sina as f32), glam::Vec3::Y, glam::Vec3::new(sina as f32, 0.0, cosa as f32), ) } #[inline] fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 { //glam_assert!(z_near > 0.0 && z_far > 0.0); let r = z_far / (z_near - z_far); glam::Mat4::from_cols( glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0), glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0), glam::Vec4::new(0.0, 0.0, r, -1.0), glam::Vec4::new(0.0, 0.0, r * z_near, 0.0), ) } impl Camera { pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self { Self{ offset, angles: glam::DVec2::ZERO, fov: glam::vec2(aspect,1.0), sensitivity: glam::dvec2(1.0/6144.0,1.0/6144.0), time: 0, } } fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 { let mut a=self.angles-self.sensitivity*delta.as_dvec2(); a.y=a.y.clamp(-std::f64::consts::FRAC_PI_2, std::f64::consts::FRAC_PI_2); return a } fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 { mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64)) } pub fn proj(&self)->glam::Mat4{ perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0) } pub fn view(&self,pos:glam::Vec3)->glam::Mat4{ //f32 good enough for view matrix glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32) } pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){ self.fov.x=fov*aspect; self.fov.y=fov; } } pub struct GameMechanicsState{ pub spawn_id:u32, //jump_counts:HashMap, } impl std::default::Default for GameMechanicsState{ fn default() -> Self { Self{ spawn_id:0, } } } pub struct WorldState{} pub struct StyleModifiers{ pub controls_mask:u32,//controls which are unable to be activated pub controls_held:u32,//controls which must be active to be able to strafe pub mv:f32, pub walkspeed:f32, pub friction:f32, pub walk_accel:f32, pub gravity:glam::Vec3, pub strafe_tick_num:TIME, pub strafe_tick_den:TIME, pub hitbox_halfsize:glam::Vec3, } impl std::default::Default for StyleModifiers{ fn default() -> Self { Self{ controls_mask: !0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), controls_held: 0, strafe_tick_num: 100,//100t strafe_tick_den: 1_000_000_000, gravity: glam::vec3(0.0,-100.0,0.0), friction: 1.2, walk_accel: 90.0, mv: 2.7, walkspeed: 18.0, hitbox_halfsize: glam::vec3(1.0,2.5,1.0), } } } impl StyleModifiers{ const CONTROL_MOVEFORWARD:u32 = 0b00000001; const CONTROL_MOVEBACK:u32 = 0b00000010; const CONTROL_MOVERIGHT:u32 = 0b00000100; const CONTROL_MOVELEFT:u32 = 0b00001000; const CONTROL_MOVEUP:u32 = 0b00010000; const CONTROL_MOVEDOWN:u32 = 0b00100000; const CONTROL_JUMP:u32 = 0b01000000; const CONTROL_ZOOM:u32 = 0b10000000; const FORWARD_DIR:glam::Vec3 = glam::Vec3::NEG_Z; const RIGHT_DIR:glam::Vec3 = glam::Vec3::X; const UP_DIR:glam::Vec3 = glam::Vec3::Y; fn get_control(&self,control:u32,controls:u32)->bool{ controls&self.controls_mask&control!=0 } fn get_control_dir(&self,controls:u32)->glam::Vec3{ //don't get fancy just do it let mut control_dir:glam::Vec3 = glam::Vec3::ZERO; //Disallow strafing if held controls are not held if controls&self.controls_held!=self.controls_held{ return control_dir; } //Apply mask after held check so you can require non-allowed keys to be held for some reason let controls=controls&self.controls_mask; if controls & Self::CONTROL_MOVEFORWARD == Self::CONTROL_MOVEFORWARD { control_dir+=Self::FORWARD_DIR; } if controls & Self::CONTROL_MOVEBACK == Self::CONTROL_MOVEBACK { control_dir+=-Self::FORWARD_DIR; } if controls & Self::CONTROL_MOVELEFT == Self::CONTROL_MOVELEFT { control_dir+=-Self::RIGHT_DIR; } if controls & Self::CONTROL_MOVERIGHT == Self::CONTROL_MOVERIGHT { control_dir+=Self::RIGHT_DIR; } if controls & Self::CONTROL_MOVEUP == Self::CONTROL_MOVEUP { control_dir+=Self::UP_DIR; } if controls & Self::CONTROL_MOVEDOWN == Self::CONTROL_MOVEDOWN { control_dir+=-Self::UP_DIR; } return control_dir } } pub struct PhysicsState{ pub time:TIME, pub body:Body, pub world:WorldState,//currently there is only one state the world can be in pub game:GameMechanicsState, pub style:StyleModifiers, pub contacts:std::collections::HashSet::, //pub intersections: Vec, //camera must exist in state because wormholes modify the camera, also camera punch pub camera:Camera, pub mouse_interpolation:MouseInterpolationState, pub controls:u32, pub walk:WalkState, pub grounded:bool, //all models pub models:Vec, pub modes:Vec, //the spawn point is where you spawn when you load into the map. //This is not the same as Reset which teleports you to Spawn0 pub spawn_point:glam::Vec3, } #[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)] pub enum AabbFace{ Right,//+X Top, Back, Left, Bottom, Front, } #[derive(Clone)] pub struct Aabb { min: glam::Vec3, max: glam::Vec3, } impl Aabb { // const FACE_DATA: [[f32; 3]; 6] = [ // [0.0f32, 0., 1.], // [0.0f32, 0., -1.], // [1.0f32, 0., 0.], // [-1.0f32, 0., 0.], // [0.0f32, 1., 0.], // [0.0f32, -1., 0.], // ]; const VERTEX_DATA: [glam::Vec3; 8] = [ glam::vec3(1., -1., -1.), glam::vec3(1., 1., -1.), glam::vec3(1., 1., 1.), glam::vec3(1., -1., 1.), glam::vec3(-1., -1., 1.), glam::vec3(-1., 1., 1.), glam::vec3(-1., 1., -1.), glam::vec3(-1., -1., -1.), ]; const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [ glam::vec3(1., -1., -1.), glam::vec3(1., 1., -1.), glam::vec3(1., 1., 1.), glam::vec3(1., -1., 1.), ]; const VERTEX_DATA_TOP: [glam::Vec3; 4] = [ glam::vec3(1., 1., -1.), glam::vec3(-1., 1., -1.), glam::vec3(-1., 1., 1.), glam::vec3(1., 1., 1.), ]; const VERTEX_DATA_BACK: [glam::Vec3; 4] = [ glam::vec3(-1., -1., 1.), glam::vec3(1., -1., 1.), glam::vec3(1., 1., 1.), glam::vec3(-1., 1., 1.), ]; const VERTEX_DATA_LEFT: [glam::Vec3; 4] = [ glam::vec3(-1., -1., 1.), glam::vec3(-1., 1., 1.), glam::vec3(-1., 1., -1.), glam::vec3(-1., -1., -1.), ]; const VERTEX_DATA_BOTTOM: [glam::Vec3; 4] = [ glam::vec3(1., -1., 1.), glam::vec3(-1., -1., 1.), glam::vec3(-1., -1., -1.), glam::vec3(1., -1., -1.), ]; const VERTEX_DATA_FRONT: [glam::Vec3; 4] = [ glam::vec3(-1., 1., -1.), glam::vec3(1., 1., -1.), glam::vec3(1., -1., -1.), glam::vec3(-1., -1., -1.), ]; pub fn new() -> Self { Self {min: glam::Vec3::INFINITY,max: glam::Vec3::NEG_INFINITY} } pub fn grow(&mut self, point:glam::Vec3){ self.min=self.min.min(point); self.max=self.max.max(point); } pub fn normal(face:AabbFace) -> glam::Vec3 { match face { AabbFace::Right => glam::vec3(1.,0.,0.), AabbFace::Top => glam::vec3(0.,1.,0.), AabbFace::Back => glam::vec3(0.,0.,1.), AabbFace::Left => glam::vec3(-1.,0.,0.), AabbFace::Bottom => glam::vec3(0.,-1.,0.), AabbFace::Front => glam::vec3(0.,0.,-1.), } } pub fn unit_vertices() -> [glam::Vec3;8] { return Self::VERTEX_DATA; } pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] { match face { AabbFace::Right => Self::VERTEX_DATA_RIGHT, AabbFace::Top => Self::VERTEX_DATA_TOP, AabbFace::Back => Self::VERTEX_DATA_BACK, AabbFace::Left => Self::VERTEX_DATA_LEFT, AabbFace::Bottom => Self::VERTEX_DATA_BOTTOM, AabbFace::Front => Self::VERTEX_DATA_FRONT, } } } //pretend to be using what we want to eventually do type TreyMeshFace = AabbFace; type TreyMesh = Aabb; enum PhysicsCollisionAttributes{ Contact{//track whether you are contacting the object contacting:crate::model::ContactingAttributes, general:crate::model::GameMechanicAttributes, }, Intersect{//track whether you are intersecting the object intersecting:crate::model::IntersectingAttributes, general:crate::model::GameMechanicAttributes, }, } pub struct ModelPhysics { //A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es //in this iteration, all it needs is extents. mesh: TreyMesh, attributes:PhysicsCollisionAttributes, } impl ModelPhysics { fn from_model_transform_attributes(model:&crate::model::IndexedModel,transform:&glam::Affine3A,attributes:PhysicsCollisionAttributes)->Self{ let mut aabb=Aabb::new(); for indexed_vertex in &model.unique_vertices { aabb.grow(transform.transform_point3(glam::Vec3::from_array(model.unique_pos[indexed_vertex.pos as usize]))); } Self{ mesh:aabb, attributes, } } pub fn from_model(model:&crate::model::IndexedModel,instance:&crate::model::ModelInstance) -> Option { match &instance.attributes{ crate::model::CollisionAttributes::Decoration=>None, crate::model::CollisionAttributes::Contact{contacting,general}=>Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Contact{contacting:contacting.clone(),general:general.clone()})), crate::model::CollisionAttributes::Intersect{intersecting,general}=>None,//Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Intersecting{intersecting,general})), } } pub fn unit_vertices(&self) -> [glam::Vec3;8] { Aabb::unit_vertices() } pub fn mesh(&self) -> &TreyMesh { return &self.mesh; } pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] { Aabb::unit_face_vertices(face) } pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh { let mut aabb=self.mesh.clone(); //in this implementation face = worldspace aabb face match face { AabbFace::Right => aabb.min.x=aabb.max.x, AabbFace::Top => aabb.min.y=aabb.max.y, AabbFace::Back => aabb.min.z=aabb.max.z, AabbFace::Left => aabb.max.x=aabb.min.x, AabbFace::Bottom => aabb.max.y=aabb.min.y, AabbFace::Front => aabb.max.z=aabb.min.z, } return aabb; } pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 { Aabb::normal(face)//this is wrong for scale } } //need non-face (full model) variant for CanCollide false objects //OR have a separate list from contacts for model intersection #[derive(Debug,Clone,Eq,Hash,PartialEq)] pub struct RelativeCollision { face: TreyMeshFace,//just an id model: u32,//using id to avoid lifetimes } impl RelativeCollision { pub fn model<'a>(&self,models:&'a Vec)->Option<&'a ModelPhysics>{ models.get(self.model as usize) } pub fn mesh(&self,models:&Vec) -> TreyMesh { return self.model(models).unwrap().face_mesh(self.face).clone() } pub fn normal(&self,models:&Vec) -> glam::Vec3 { return self.model(models).unwrap().face_normal(self.face) } } pub type TIME = i64; impl Body { pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self { Self{ position, velocity, acceleration, time: 0, } } pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{ let dt=(time-self.time) as f64/1_000_000_000f64; self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32) } pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{ let dt=(time-self.time) as f64/1_000_000_000f64; self.velocity+self.acceleration*(dt as f32) } pub fn advance_time(&mut self, time: TIME){ self.position=self.extrapolated_position(time); self.velocity=self.extrapolated_velocity(time); self.time=time; } } impl PhysicsState { //tickless gaming pub fn run(&mut self, time_limit:TIME){ //prepare is ommitted - everything is done via instructions. while let Some(instruction) = self.next_instruction(time_limit) {//collect //process self.process_instruction(instruction); //write hash lol } } pub fn advance_time(&mut self, time: TIME){ self.body.advance_time(time); self.time=time; } fn set_control(&mut self,control:u32,state:bool){ self.controls=if state{self.controls|control}else{self.controls&!control}; } fn jump(&mut self){ self.grounded=false;//do I need this? let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0); self.contact_constrain_velocity(&mut v); self.body.velocity=v; } fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){ for contact in self.contacts.iter() { let n=contact.normal(&self.models); let d=velocity.dot(n); if d<0f32{ (*velocity)-=d/n.length_squared()*n; } } } fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){ for contact in self.contacts.iter() { let n=contact.normal(&self.models); let d=acceleration.dot(n); if d<0f32{ (*acceleration)-=d/n.length_squared()*n; } } } fn next_strafe_instruction(&self) -> Option> { return Some(TimedInstruction{ time:(self.time*self.style.strafe_tick_num/self.style.strafe_tick_den+1)*self.style.strafe_tick_den/self.style.strafe_tick_num, //only poll the physics if there is a before and after mouse event instruction:PhysicsInstruction::StrafeTick }); } //state mutated on collision: //Accelerator //stair step-up //state mutated on instruction //change fly acceleration (fly_sustain) //change fly velocity //generic event emmiters //PlatformStandTime //walk/swim/air/ladder sounds //VState? //falling under the map // fn next_respawn_instruction(&self) -> Option> { // if self.body.position Option> { // return Some(TimedInstruction{ // time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num, // //only poll the physics if there is a before and after mouse event // instruction:PhysicsInstruction::Water // }); // } fn refresh_walk_target(&mut self){ //calculate acceleration yada yada if self.grounded{ let mut v=self.walk.target_velocity; self.contact_constrain_velocity(&mut v); let mut target_diff=v-self.body.velocity; target_diff.y=0f32; if target_diff==glam::Vec3::ZERO{ let mut a=glam::Vec3::ZERO; self.contact_constrain_acceleration(&mut a); self.body.acceleration=a; self.walk.state=WalkEnum::Reached; }else{ let accel=self.style.walk_accel.min(self.style.gravity.length()*self.style.friction); let time_delta=target_diff.length()/accel; let mut a=target_diff/time_delta; self.contact_constrain_acceleration(&mut a); self.body.acceleration=a; self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME; self.walk.state=WalkEnum::Transient; } }else{ self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded } } fn next_walk_instruction(&self) -> Option> { //check if you have a valid walk state and create an instruction if self.grounded{ match self.walk.state{ WalkEnum::Transient=>Some(TimedInstruction{ time:self.walk.target_time, instruction:PhysicsInstruction::ReachWalkTargetVelocity }), WalkEnum::Reached=>None, } }else{ return None; } } fn mesh(&self) -> TreyMesh { let mut aabb=Aabb::new(); for vertex in Aabb::unit_vertices(){ aabb.grow(self.body.position+self.style.hitbox_halfsize*vertex); } aabb } fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option> { //must treat cancollide false objects differently: you may not exit through the same face you entered. //RelativeCollsion must reference the full model instead of a particular face //this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc //find best t let mut best_time=time_limit; let mut exit_face:Option=None; let mesh0=self.mesh(); let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh(); let (v,a)=(-self.body.velocity,self.body.acceleration); //collect x match collision_data.face { AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{ for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) { //negative t = back in time //must be moving towards surface to collide //must beat the current soonest collision time //must be moving towards surface let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME; if time<=t_time&&t_time{ //generate event if v.x<0||a.x<0 if -v.x<0f32{ best_time=time; exit_face=Some(TreyMeshFace::Left); } }, AabbFace::Right=>{ //generate event if 0{ for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) { //negative t = back in time //must be moving towards surface to collide //must beat the current soonest collision time //must be moving towards surface let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME; if time<=t_time&&t_time{ //generate event if v.y<0||a.y<0 if -v.y<0f32{ best_time=time; exit_face=Some(TreyMeshFace::Bottom); } }, AabbFace::Top=>{ //generate event if 0{ for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) { //negative t = back in time //must be moving towards surface to collide //must beat the current soonest collision time //must be moving towards surface let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME; if time<=t_time&&t_time{ //generate event if v.z<0||a.z<0 if -v.z<0f32{ best_time=time; exit_face=Some(TreyMeshFace::Front); } }, AabbFace::Back=>{ //generate event if 0 Option> { //find best t let mut best_time=time_limit; let mut best_face:Option=None; let mesh0=self.mesh(); let mesh1=self.models.get(model_id as usize).unwrap().mesh(); let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration); //collect x for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) { //must collide now or in the future //must beat the current soonest collision time //must be moving towards surface let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME; if time<=t_time&&t_time for PhysicsState { //this little next instruction function can cache its return value and invalidate the cached value by watching the State. fn next_instruction(&self,time_limit:TIME) -> Option> { //JUST POLLING!!! NO MUTATION let mut collector = crate::instruction::InstructionCollector::new(time_limit); //check for collision stop instructions with curent contacts for collision_data in self.contacts.iter() { collector.collect(self.predict_collision_end(self.time,time_limit,collision_data)); } //check for collision start instructions (against every part in the game with no optimization!!) for i in 0..self.models.len() { collector.collect(self.predict_collision_start(self.time,time_limit,i as u32)); } if self.grounded { //walk maintenance collector.collect(self.next_walk_instruction()); }else{ //check to see when the next strafe tick is collector.collect(self.next_strafe_instruction()); } collector.instruction() } } impl crate::instruction::InstructionConsumer for PhysicsState { fn process_instruction(&mut self, ins:TimedInstruction) { match &ins.instruction { PhysicsInstruction::StrafeTick => (), PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (), _=>println!("{:?}",ins), } //selectively update body match &ins.instruction { PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),//dodge time for mouse movement PhysicsInstruction::Input(_) |PhysicsInstruction::SetSpawnPosition(_) |PhysicsInstruction::ReachWalkTargetVelocity |PhysicsInstruction::CollisionStart(_) |PhysicsInstruction::CollisionEnd(_) |PhysicsInstruction::StrafeTick => self.advance_time(ins.time), } match ins.instruction { PhysicsInstruction::SetSpawnPosition(position)=>{ self.spawn_point=position; } PhysicsInstruction::CollisionStart(c) => { //check ground match &c.face { AabbFace::Top => { //ground self.grounded=true; }, _ => (), } self.contacts.insert(c); //flatten v let mut v=self.body.velocity; self.contact_constrain_velocity(&mut v); self.body.velocity=v; if self.grounded&&self.style.get_control(StyleModifiers::CONTROL_JUMP,self.controls){ self.jump(); } self.refresh_walk_target(); }, PhysicsInstruction::CollisionEnd(c) => { self.contacts.remove(&c);//remove contact before calling contact_constrain_acceleration let mut a=self.style.gravity; self.contact_constrain_acceleration(&mut a); self.body.acceleration=a; //check ground match &c.face { AabbFace::Top => { self.grounded=false; }, _ => (), } self.refresh_walk_target(); }, PhysicsInstruction::StrafeTick => { let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x); let control_dir=camera_mat*self.style.get_control_dir(self.controls); let d=self.body.velocity.dot(control_dir); if d { //precisely set velocity let mut a=glam::Vec3::ZERO; self.contact_constrain_acceleration(&mut a); self.body.acceleration=a; let mut v=self.walk.target_velocity; self.contact_constrain_velocity(&mut v); self.body.velocity=v; self.walk.state=WalkEnum::Reached; }, PhysicsInstruction::Input(input_instruction) => { let mut refresh_walk_target=true; let mut refresh_walk_target_velocity=true; match input_instruction{ InputInstruction::MoveMouse(m) => { self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0); self.mouse_interpolation.move_mouse(self.time,m); }, InputInstruction::MoveForward(s) => self.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s), InputInstruction::MoveLeft(s) => self.set_control(StyleModifiers::CONTROL_MOVELEFT,s), InputInstruction::MoveBack(s) => self.set_control(StyleModifiers::CONTROL_MOVEBACK,s), InputInstruction::MoveRight(s) => self.set_control(StyleModifiers::CONTROL_MOVERIGHT,s), InputInstruction::MoveUp(s) => self.set_control(StyleModifiers::CONTROL_MOVEUP,s), InputInstruction::MoveDown(s) => self.set_control(StyleModifiers::CONTROL_MOVEDOWN,s), InputInstruction::Jump(s) => { self.set_control(StyleModifiers::CONTROL_JUMP,s); if self.grounded{ self.jump(); } refresh_walk_target_velocity=false; }, InputInstruction::Zoom(s) => { self.set_control(StyleModifiers::CONTROL_ZOOM,s); refresh_walk_target=false; }, InputInstruction::Reset => { //temp self.body.position=self.spawn_point; self.body.velocity=glam::Vec3::ZERO; //manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))} self.contacts.clear(); self.body.acceleration=self.style.gravity; self.walk.state=WalkEnum::Reached; self.grounded=false; refresh_walk_target=false; }, InputInstruction::Idle => {refresh_walk_target=false;},//literally idle! } if refresh_walk_target{ //calculate walk target velocity if refresh_walk_target_velocity{ let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x); let control_dir=camera_mat*self.style.get_control_dir(self.controls); self.walk.target_velocity=self.style.walkspeed*control_dir; } self.refresh_walk_target(); } }, } } }