delete aabb physics

This commit is contained in:
Quaternions 2023-10-31 20:55:15 -07:00
parent 3c443b6b6a
commit d155517587

View File

@ -1,7 +1,6 @@
use crate::zeroes::zeroes2;
use crate::instruction::{InstructionEmitter,InstructionConsumer,TimedInstruction};
use crate::integer::{Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64,Ratio64Vec2};
use crate::model_physics::{PhysicsMesh,TransformedMesh,MinkowskiMesh};
use crate::model_physics::{PhysicsMesh,TransformedMesh};
#[derive(Debug)]
pub enum PhysicsInstruction {
@ -970,285 +969,6 @@ impl PhysicsState {
MoveState::Water=>None,//TODO
}
}
fn mesh(&self) -> TreyMesh {
let mut aabb=TreyMesh::default();
for vertex in TreyMesh::unit_vertices(){
aabb.grow(self.body.position+self.style.hitbox_halfsize*vertex);
}
aabb
}
fn predict_collision_end(&self,time:Time,time_limit:Time,collision_data:&ContactCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_time=time_limit;
let mut exit_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh();
let (v,a)=(-self.body.velocity,self.body.acceleration);
//collect x
match collision_data.face {
TreyMeshFace::Top|TreyMeshFace::Back|TreyMeshFace::Bottom|TreyMeshFace::Front=>{
for t in zeroes2(mesh0.max.x()-mesh1.min.x(),v.x(),a.x()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.x()+a.x()*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Left);
break;
}
}
for t in zeroes2(mesh0.min.x()-mesh1.max.x(),v.x(),a.x()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.x()+a.x()*-t<Planar64::ZERO{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Right);
break;
}
}
},
TreyMeshFace::Left=>{
//generate event if v.x<0||a.x<0
if -v.x()<Planar64::ZERO{
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
TreyMeshFace::Right=>{
//generate event if 0<v.x||0<a.x
if Planar64::ZERO<(-v.x()){
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
}
//collect y
match collision_data.face {
TreyMeshFace::Left|TreyMeshFace::Back|TreyMeshFace::Right|TreyMeshFace::Front=>{
for t in zeroes2(mesh0.max.y()-mesh1.min.y(),v.y(),a.y()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.y()+a.y()*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Bottom);
break;
}
}
for t in zeroes2(mesh0.min.y()-mesh1.max.y(),v.y(),a.y()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.y()+a.y()*-t<Planar64::ZERO{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Top);
break;
}
}
},
TreyMeshFace::Bottom=>{
//generate event if v.y<0||a.y<0
if -v.y()<Planar64::ZERO{
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
TreyMeshFace::Top=>{
//generate event if 0<v.y||0<a.y
if Planar64::ZERO<(-v.y()){
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
}
//collect z
match collision_data.face {
TreyMeshFace::Left|TreyMeshFace::Bottom|TreyMeshFace::Right|TreyMeshFace::Top=>{
for t in zeroes2(mesh0.max.z()-mesh1.min.z(),v.z(),a.z()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.z()+a.z()*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Front);
break;
}
}
for t in zeroes2(mesh0.min.z()-mesh1.max.z(),v.z(),a.z()/2) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.z()+a.z()*-t<Planar64::ZERO{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Back);
break;
}
}
},
TreyMeshFace::Front=>{
//generate event if v.z<0||a.z<0
if -v.z()<Planar64::ZERO{
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
TreyMeshFace::Back=>{
//generate event if 0<v.z||0<a.z
if Planar64::ZERO<(-v.z()){
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
}
//generate instruction
if let Some(_face) = exit_face{
return Some(TimedInstruction {
time: best_time,
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
})
}
None
}
fn predict_collision_start(&self,time:Time,time_limit:Time,model_id:usize) -> Option<TimedInstruction<PhysicsInstruction>> {
let mesh0=self.mesh();
let mesh1=self.models.get(model_id).unwrap().mesh();
let (p,v,a,body_time)=(self.body.position,self.body.velocity,self.body.acceleration,self.body.time);
//find best t
let mut best_time=time_limit;
let mut best_face:Option<TreyMeshFace>=None;
//collect x
for t in zeroes2(mesh0.max.x()-mesh1.min.x(),v.x(),a.x()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.x()+a.x()*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Left);
break;
}
}
}
for t in zeroes2(mesh0.min.x()-mesh1.max.x(),v.x(),a.x()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.x()+a.x()*t<Planar64::ZERO{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Right);
break;
}
}
}
//collect y
for t in zeroes2(mesh0.max.y()-mesh1.min.y(),v.y(),a.y()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.y()+a.y()*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
break;
}
}
}
for t in zeroes2(mesh0.min.y()-mesh1.max.y(),v.y(),a.y()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.y()+a.y()*t<Planar64::ZERO{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Top);
break;
}
}
}
//collect z
for t in zeroes2(mesh0.max.z()-mesh1.min.z(),v.z(),a.z()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.z()+a.z()*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Front);
break;
}
}
}
for t in zeroes2(mesh0.min.z()-mesh1.max.z(),v.z(),a.z()/2) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.z()+a.z()*t<Planar64::ZERO{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x() {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Back);
break;
}
}
}
//generate instruction
if let Some(face)=best_face{
return Some(TimedInstruction{
time: best_time,
instruction:PhysicsInstruction::CollisionStart(ContactCollision{
face,
model:model_id
})
})
}
None
}
}
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {