strafe-client-jed/src/physics.rs

1245 lines
42 KiB
Rust
Raw Normal View History

2023-09-18 20:20:51 +00:00
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
2023-09-08 19:03:32 +00:00
2023-09-19 01:34:48 +00:00
#[derive(Debug)]
2023-09-09 00:34:26 +00:00
pub enum PhysicsInstruction {
2023-09-09 00:00:50 +00:00
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
2023-09-09 03:14:18 +00:00
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
2023-09-20 00:53:29 +00:00
//InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
2023-10-05 03:04:04 +00:00
Input(PhysicsInputInstruction),
}
#[derive(Debug)]
pub enum PhysicsInputInstruction {
ReplaceMouse(MouseState,MouseState),
SetNextMouse(MouseState),
SetMoveForward(bool),
SetMoveLeft(bool),
SetMoveBack(bool),
SetMoveRight(bool),
SetMoveUp(bool),
SetMoveDown(bool),
SetJump(bool),
SetZoom(bool),
Reset,
Idle,
2023-09-20 00:53:29 +00:00
}
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveForward(bool),
MoveLeft(bool),
MoveBack(bool),
MoveRight(bool),
MoveUp(bool),
MoveDown(bool),
Jump(bool),
Zoom(bool),
Reset,
Idle,
//Idle: there were no input events, but the simulation is safe to advance to this timestep
//for interpolation / networking / playback reasons, most playback heads will always want
//to be 1 instruction ahead to generate the next state for interpolation.
2023-09-09 00:00:50 +00:00
}
2023-10-05 03:04:04 +00:00
#[derive(Clone)]
2023-09-08 18:33:16 +00:00
pub struct Body {
2023-09-09 03:14:18 +00:00
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD!
}
2023-09-19 04:10:07 +00:00
trait MyHash{
fn hash(&self) -> u64;
}
impl MyHash for Body {
2023-10-04 21:01:06 +00:00
fn hash(&self) -> u64 {
2023-09-19 04:10:07 +00:00
let mut hasher=std::collections::hash_map::DefaultHasher::new();
2023-10-04 21:01:06 +00:00
for &el in self.position.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.velocity.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.acceleration.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice());
2023-09-19 04:10:07 +00:00
return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid
2023-10-04 21:01:06 +00:00
}
2023-09-19 04:10:07 +00:00
}
2023-09-09 03:14:18 +00:00
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
2023-09-08 18:33:16 +00:00
}
2023-09-20 00:53:29 +00:00
/*
2023-09-10 20:24:47 +00:00
enum InputInstruction {
}
2023-09-10 21:13:24 +00:00
struct InputState {
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
2023-09-20 00:53:29 +00:00
}
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<InputInstruction>> {
2023-10-04 21:01:06 +00:00
//this is polled by PhysicsState for actions like Jump
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
self.queue.get(0)
2023-09-20 00:53:29 +00:00
}
}
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
//add to queue
self.queue.push(ins);
2023-09-12 07:05:30 +00:00
}
2023-09-10 21:13:24 +00:00
}
2023-09-20 00:53:29 +00:00
*/
2023-09-10 21:13:24 +00:00
2023-10-03 05:45:48 +00:00
//hey dumbass just use a delta
2023-10-05 03:04:04 +00:00
#[derive(Clone,Debug)]
pub struct MouseState {
pub pos: glam::IVec2,
pub time: TIME,
2023-09-10 20:24:47 +00:00
}
2023-10-05 03:04:04 +00:00
impl Default for MouseState{
fn default() -> Self {
2023-09-20 00:53:29 +00:00
Self {
2023-10-05 03:04:04 +00:00
time:0,
pos:glam::IVec2::ZERO,
2023-09-20 00:53:29 +00:00
}
}
2023-10-05 03:04:04 +00:00
}
impl MouseState {
pub fn lerp(&self,target:&MouseState,time:TIME)->glam::IVec2 {
let m0=self.pos.as_i64vec2();
let m1=target.pos.as_i64vec2();
//these are deltas
let t1t=(target.time-time) as i64;
let tt0=(time-self.time) as i64;
let dt=(target.time-self.time) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
2023-09-10 20:24:47 +00:00
}
}
pub enum WalkEnum{
Reached,
Transient,
}
2023-09-19 04:10:07 +00:00
pub struct WalkState {
pub target_velocity: glam::Vec3,
pub target_time: TIME,
pub state: WalkEnum,
2023-09-19 04:10:07 +00:00
}
impl WalkState {
pub fn new() -> Self {
Self{
target_velocity:glam::Vec3::ZERO,
target_time:0,
2023-09-20 00:53:29 +00:00
state:WalkEnum::Reached,
2023-09-19 04:10:07 +00:00
}
}
}
2023-10-05 03:04:04 +00:00
#[derive(Clone)]
pub struct PhysicsCamera {
2023-09-20 00:53:29 +00:00
offset: glam::Vec3,
angles: glam::DVec2,//YAW AND THEN PITCH
//punch: glam::Vec3,
//punch_velocity: glam::Vec3,
sensitivity: glam::DVec2,
2023-10-05 03:04:04 +00:00
mouse:MouseState,
2023-09-20 00:53:29 +00:00
}
#[inline]
fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
2023-10-04 21:01:06 +00:00
let (sina, cosa) = angle.sin_cos();
glam::Mat3::from_cols(
glam::Vec3::new(cosa as f32, 0.0, -sina as f32),
glam::Vec3::Y,
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
)
2023-09-20 00:53:29 +00:00
}
2023-10-05 03:04:04 +00:00
impl PhysicsCamera {
pub fn from_offset(offset:glam::Vec3) -> Self {
2023-09-20 00:53:29 +00:00
Self{
2023-10-04 21:01:06 +00:00
offset,
angles: glam::DVec2::ZERO,
2023-10-04 21:07:57 +00:00
sensitivity: glam::dvec2(1.0/16384.0,1.0/16384.0),
2023-10-05 03:04:04 +00:00
mouse:MouseState{pos:glam::IVec2::ZERO,time:-1},//escape initialization hell divide by zero
2023-09-20 00:53:29 +00:00
}
}
2023-10-05 03:04:04 +00:00
pub fn simulate_move_angles(&self, mouse_pos: glam::IVec2) -> glam::DVec2 {
let mut a=self.angles-self.sensitivity*(mouse_pos-self.mouse.pos).as_dvec2();
2023-09-29 03:21:10 +00:00
a.y=a.y.clamp(-std::f64::consts::FRAC_PI_2, std::f64::consts::FRAC_PI_2);
2023-09-20 00:53:29 +00:00
return a
}
2023-10-05 03:04:04 +00:00
fn simulate_move_rotation_y(&self, mouse_pos_x: i32) -> glam::Mat3 {
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*((mouse_pos_x-self.mouse.pos.x) as f64))
2023-09-20 00:53:29 +00:00
}
}
2023-10-03 05:45:20 +00:00
pub struct GameMechanicsState{
pub stage_id:u32,
2023-10-03 05:45:20 +00:00
//jump_counts:HashMap<u32,u32>,
}
impl std::default::Default for GameMechanicsState{
fn default() -> Self {
Self{
stage_id:0,
2023-10-03 05:45:20 +00:00
}
}
}
pub struct WorldState{}
pub struct StyleModifiers{
pub controls_mask:u32,//controls which are unable to be activated
pub controls_held:u32,//controls which must be active to be able to strafe
pub mv:f32,
pub walkspeed:f32,
pub friction:f32,
pub walk_accel:f32,
pub gravity:glam::Vec3,
pub strafe_tick_num:TIME,
pub strafe_tick_den:TIME,
pub hitbox_halfsize:glam::Vec3,
}
impl std::default::Default for StyleModifiers{
fn default() -> Self {
Self{
2023-10-04 00:31:30 +00:00
controls_mask: !0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN),
2023-10-03 05:45:20 +00:00
controls_held: 0,
strafe_tick_num: 100,//100t
strafe_tick_den: 1_000_000_000,
gravity: glam::vec3(0.0,-100.0,0.0),
friction: 1.2,
walk_accel: 90.0,
mv: 2.7,
walkspeed: 18.0,
hitbox_halfsize: glam::vec3(1.0,2.5,1.0),
}
}
}
2023-10-03 23:52:45 +00:00
impl StyleModifiers{
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
const CONTROL_MOVEBACK:u32 = 0b00000010;
const CONTROL_MOVERIGHT:u32 = 0b00000100;
const CONTROL_MOVELEFT:u32 = 0b00001000;
const CONTROL_MOVEUP:u32 = 0b00010000;
const CONTROL_MOVEDOWN:u32 = 0b00100000;
const CONTROL_JUMP:u32 = 0b01000000;
const CONTROL_ZOOM:u32 = 0b10000000;
const FORWARD_DIR:glam::Vec3 = glam::Vec3::NEG_Z;
const RIGHT_DIR:glam::Vec3 = glam::Vec3::X;
const UP_DIR:glam::Vec3 = glam::Vec3::Y;
fn get_control(&self,control:u32,controls:u32)->bool{
2023-10-05 03:04:04 +00:00
controls&self.controls_mask&control==control
2023-10-03 23:52:45 +00:00
}
fn get_control_dir(&self,controls:u32)->glam::Vec3{
//don't get fancy just do it
let mut control_dir:glam::Vec3 = glam::Vec3::ZERO;
//Disallow strafing if held controls are not held
if controls&self.controls_held!=self.controls_held{
return control_dir;
}
//Apply mask after held check so you can require non-allowed keys to be held for some reason
let controls=controls&self.controls_mask;
if controls & Self::CONTROL_MOVEFORWARD == Self::CONTROL_MOVEFORWARD {
control_dir+=Self::FORWARD_DIR;
}
if controls & Self::CONTROL_MOVEBACK == Self::CONTROL_MOVEBACK {
control_dir+=-Self::FORWARD_DIR;
}
if controls & Self::CONTROL_MOVELEFT == Self::CONTROL_MOVELEFT {
control_dir+=-Self::RIGHT_DIR;
}
if controls & Self::CONTROL_MOVERIGHT == Self::CONTROL_MOVERIGHT {
control_dir+=Self::RIGHT_DIR;
}
if controls & Self::CONTROL_MOVEUP == Self::CONTROL_MOVEUP {
control_dir+=Self::UP_DIR;
}
if controls & Self::CONTROL_MOVEDOWN == Self::CONTROL_MOVEDOWN {
control_dir+=-Self::UP_DIR;
}
return control_dir
}
}
2023-10-03 05:45:20 +00:00
pub struct PhysicsState{
pub time:TIME,
pub body:Body,
pub world:WorldState,//currently there is only one state the world can be in
pub game:GameMechanicsState,
pub style:StyleModifiers,
pub contacts:std::collections::HashMap::<u32,RelativeCollision>,
pub intersects:std::collections::HashMap::<u32,RelativeCollision>,
2023-09-18 20:44:43 +00:00
//pub intersections: Vec<ModelId>,
2023-09-10 20:24:47 +00:00
//camera must exist in state because wormholes modify the camera, also camera punch
2023-10-05 03:04:04 +00:00
pub camera:PhysicsCamera,
pub next_mouse:MouseState,//Where is the mouse headed next
2023-10-03 05:45:20 +00:00
pub controls:u32,
pub walk:WalkState,
pub grounded:bool,
//all models
pub models:Vec<ModelPhysics>,
2023-10-06 06:52:04 +00:00
pub bvh:crate::bvh::BvhNode,
2023-10-03 05:45:20 +00:00
2023-10-04 02:42:07 +00:00
pub modes:Vec<crate::model::ModeDescription>,
pub mode_from_mode_id:std::collections::HashMap::<u32,usize>,
2023-10-03 05:45:20 +00:00
//the spawn point is where you spawn when you load into the map.
//This is not the same as Reset which teleports you to Spawn0
pub spawn_point:glam::Vec3,
2023-09-08 18:33:16 +00:00
}
2023-10-05 03:04:04 +00:00
#[derive(Clone)]
pub struct PhysicsOutputState{
camera:PhysicsCamera,
body:Body,
}
impl PhysicsOutputState{
pub fn adjust_mouse(&self,mouse:&MouseState)->(glam::Vec3,glam::Vec2){
(self.body.extrapolated_position(mouse.time)+self.camera.offset,self.camera.simulate_move_angles(mouse.pos).as_vec2())
}
}
2023-09-08 18:33:16 +00:00
2023-09-18 20:20:51 +00:00
//pretend to be using what we want to eventually do
2023-10-06 03:32:02 +00:00
type TreyMeshFace = crate::aabb::AabbFace;
type TreyMesh = crate::aabb::Aabb;
2023-09-08 22:54:43 +00:00
2023-10-03 05:45:20 +00:00
enum PhysicsCollisionAttributes{
Contact{//track whether you are contacting the object
contacting:crate::model::ContactingAttributes,
general:crate::model::GameMechanicAttributes,
},
Intersect{//track whether you are intersecting the object
intersecting:crate::model::IntersectingAttributes,
general:crate::model::GameMechanicAttributes,
},
}
2023-09-21 07:01:31 +00:00
pub struct ModelPhysics {
2023-09-08 22:54:43 +00:00
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
//in this iteration, all it needs is extents.
mesh: TreyMesh,
transform:glam::Affine3A,
2023-10-03 05:45:20 +00:00
attributes:PhysicsCollisionAttributes,
2023-09-08 22:54:43 +00:00
}
2023-09-21 07:01:31 +00:00
impl ModelPhysics {
2023-10-03 23:34:54 +00:00
fn from_model_transform_attributes(model:&crate::model::IndexedModel,transform:&glam::Affine3A,attributes:PhysicsCollisionAttributes)->Self{
2023-10-06 03:32:02 +00:00
let mut aabb=TreyMesh::new();
for indexed_vertex in &model.unique_vertices {
2023-10-03 23:34:54 +00:00
aabb.grow(transform.transform_point3(glam::Vec3::from_array(model.unique_pos[indexed_vertex.pos as usize])));
}
Self{
mesh:aabb,
2023-10-03 23:34:54 +00:00
attributes,
transform:transform.clone(),
2023-10-03 23:34:54 +00:00
}
}
pub fn from_model(model:&crate::model::IndexedModel,instance:&crate::model::ModelInstance) -> Option<Self> {
match &instance.attributes{
crate::model::CollisionAttributes::Contact{contacting,general}=>Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Contact{contacting:contacting.clone(),general:general.clone()})),
2023-10-04 21:05:53 +00:00
crate::model::CollisionAttributes::Intersect{intersecting,general}=>Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Intersect{intersecting:intersecting.clone(),general:general.clone()})),
crate::model::CollisionAttributes::Decoration=>None,
}
2023-09-08 23:14:01 +00:00
}
2023-09-18 20:20:51 +00:00
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
2023-10-06 03:32:02 +00:00
TreyMesh::unit_vertices()
2023-09-18 20:20:51 +00:00
}
pub fn mesh(&self) -> &TreyMesh {
return &self.mesh;
2023-09-18 20:20:51 +00:00
}
2023-10-06 03:32:02 +00:00
pub fn face_mesh(&self,face:TreyMeshFace)->TreyMesh{
self.mesh.face(face)
2023-09-08 22:54:43 +00:00
}
2023-09-18 20:20:51 +00:00
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
2023-10-06 03:32:02 +00:00
TreyMesh::normal(face)//this is wrong for scale
2023-09-08 22:54:43 +00:00
}
}
2023-09-18 20:20:51 +00:00
//need non-face (full model) variant for CanCollide false objects
2023-09-18 20:44:43 +00:00
//OR have a separate list from contacts for model intersection
2023-09-19 01:34:48 +00:00
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
2023-09-08 22:54:22 +00:00
pub struct RelativeCollision {
2023-09-18 20:20:51 +00:00
face: TreyMeshFace,//just an id
2023-09-08 22:54:22 +00:00
model: u32,//using id to avoid lifetimes
}
impl RelativeCollision {
2023-10-04 00:20:35 +00:00
pub fn model<'a>(&self,models:&'a Vec<ModelPhysics>)->Option<&'a ModelPhysics>{
models.get(self.model as usize)
}
2023-09-21 07:01:31 +00:00
pub fn mesh(&self,models:&Vec<ModelPhysics>) -> TreyMesh {
2023-10-04 00:20:35 +00:00
return self.model(models).unwrap().face_mesh(self.face).clone()
2023-09-08 22:54:22 +00:00
}
2023-09-21 07:01:31 +00:00
pub fn normal(&self,models:&Vec<ModelPhysics>) -> glam::Vec3 {
2023-10-04 00:20:35 +00:00
return self.model(models).unwrap().face_normal(self.face)
2023-09-08 22:54:22 +00:00
}
}
2023-09-08 18:33:16 +00:00
pub type TIME = i64;
2023-09-09 03:14:18 +00:00
impl Body {
2023-09-18 23:03:27 +00:00
pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self {
2023-09-09 03:14:18 +00:00
Self{
2023-09-18 23:03:27 +00:00
position,
velocity,
acceleration,
2023-09-09 03:14:18 +00:00
time: 0,
}
}
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
}
2023-09-18 23:04:18 +00:00
pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.velocity+self.acceleration*(dt as f32)
}
2023-09-09 03:14:18 +00:00
pub fn advance_time(&mut self, time: TIME){
self.position=self.extrapolated_position(time);
2023-09-18 23:04:18 +00:00
self.velocity=self.extrapolated_velocity(time);
2023-09-09 03:14:18 +00:00
self.time=time;
}
}
2023-10-05 03:04:04 +00:00
impl Default for PhysicsState{
fn default() -> Self {
Self{
spawn_point:glam::vec3(0.0,50.0,0.0),
body: Body::with_pva(glam::vec3(0.0,50.0,0.0),glam::vec3(0.0,0.0,0.0),glam::vec3(0.0,-100.0,0.0)),
time: 0,
style:StyleModifiers::default(),
grounded: false,
contacts: std::collections::HashMap::new(),
intersects: std::collections::HashMap::new(),
models: Vec::new(),
2023-10-06 06:52:04 +00:00
bvh:crate::bvh::BvhNode::default(),
2023-10-05 03:04:04 +00:00
walk: WalkState::new(),
camera: PhysicsCamera::from_offset(glam::vec3(0.0,4.5-2.5,0.0)),
next_mouse: MouseState::default(),
controls: 0,
world:WorldState{},
game:GameMechanicsState::default(),
modes:Vec::new(),
mode_from_mode_id:std::collections::HashMap::new(),
}
}
}
2023-09-08 18:33:16 +00:00
impl PhysicsState {
pub fn clear(&mut self){
self.models.clear();
self.modes.clear();
self.contacts.clear();
self.intersects.clear();
}
2023-10-05 03:04:04 +00:00
pub fn into_worker(mut self)->crate::worker::CompatWorker<TimedInstruction<InputInstruction>,PhysicsOutputState,Box<dyn FnMut(TimedInstruction<InputInstruction>)->PhysicsOutputState>>{
2023-10-05 03:04:04 +00:00
let mut mouse_blocking=true;
let mut last_mouse_time=self.next_mouse.time;
let mut timeline=std::collections::VecDeque::new();
crate::worker::CompatWorker::new(self.output(),Box::new(move |ins:TimedInstruction<InputInstruction>|{
2023-10-05 03:04:04 +00:00
if if let Some(phys_input)=match ins.instruction{
InputInstruction::MoveMouse(m)=>{
if mouse_blocking{
//tell the game state which is living in the past about its future
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:m}),
});
}else{
//mouse has just started moving again after being still for longer than 10ms.
//replace the entire mouse interpolation state to avoid an intermediate state with identical m0.t m1.t timestamps which will divide by zero
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::ReplaceMouse(
MouseState{time:last_mouse_time,pos:self.next_mouse.pos},
MouseState{time:ins.time,pos:m}
),
});
//delay physics execution until we have an interpolation target
mouse_blocking=true;
}
last_mouse_time=ins.time;
None
},
InputInstruction::MoveForward(s)=>Some(PhysicsInputInstruction::SetMoveForward(s)),
InputInstruction::MoveLeft(s)=>Some(PhysicsInputInstruction::SetMoveLeft(s)),
InputInstruction::MoveBack(s)=>Some(PhysicsInputInstruction::SetMoveBack(s)),
InputInstruction::MoveRight(s)=>Some(PhysicsInputInstruction::SetMoveRight(s)),
InputInstruction::MoveUp(s)=>Some(PhysicsInputInstruction::SetMoveUp(s)),
InputInstruction::MoveDown(s)=>Some(PhysicsInputInstruction::SetMoveDown(s)),
InputInstruction::Jump(s)=>Some(PhysicsInputInstruction::SetJump(s)),
InputInstruction::Zoom(s)=>Some(PhysicsInputInstruction::SetZoom(s)),
InputInstruction::Reset=>Some(PhysicsInputInstruction::Reset),
InputInstruction::Idle=>Some(PhysicsInputInstruction::Idle),
}{
//non-mouse event
timeline.push_back(TimedInstruction{
time:ins.time,
instruction:phys_input,
});
if mouse_blocking{
//assume the mouse has stopped moving after 10ms.
//shitty mice are 125Hz which is 8ms so this should cover that.
//setting this to 100us still doesn't print even though it's 10x lower than the polling rate,
//so mouse events are probably not handled separately from drawing and fire right before it :(
if 10_000_000<ins.time-self.next_mouse.time{
//push an event to extrapolate no movement from
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:self.next_mouse.pos}),
});
last_mouse_time=ins.time;
//stop blocking. the mouse is not moving so the physics does not need to live in the past and wait for interpolation targets.
mouse_blocking=false;
true
}else{
false
}
}else{
//keep this up to date so that it can be used as a known-timestamp
//that the mouse was not moving when the mouse starts moving again
last_mouse_time=ins.time;
true
}
}else{
//mouse event
true
}{
//empty queue
while let Some(instruction)=timeline.pop_front(){
self.run(instruction.time);
self.process_instruction(TimedInstruction{
time:instruction.time,
instruction:PhysicsInstruction::Input(instruction.instruction),
});
}
}
self.output()
}))
2023-10-05 03:04:04 +00:00
}
pub fn output(&self)->PhysicsOutputState{
PhysicsOutputState{
body:self.body.clone(),
camera:self.camera.clone(),
}
}
pub fn generate_models(&mut self,indexed_models:&crate::model::IndexedModelInstances){
let mut starts=Vec::new();
let mut spawns=Vec::new();
let mut ordered_checkpoints=Vec::new();
let mut unordered_checkpoints=Vec::new();
for model in &indexed_models.models{
//make aabb and run vertices to get realistic bounds
for model_instance in &model.instances{
if let Some(model_physics)=ModelPhysics::from_model(model,model_instance){
let model_id=self.models.len() as u32;
self.models.push(model_physics);
for attr in &model_instance.temp_indexing{
match attr{
crate::model::TempIndexedAttributes::Start{mode_id}=>starts.push((*mode_id,model_id)),
crate::model::TempIndexedAttributes::Spawn{mode_id,stage_id}=>spawns.push((*mode_id,model_id,*stage_id)),
crate::model::TempIndexedAttributes::OrderedCheckpoint{mode_id,checkpoint_id}=>ordered_checkpoints.push((*mode_id,model_id,*checkpoint_id)),
crate::model::TempIndexedAttributes::UnorderedCheckpoint{mode_id}=>unordered_checkpoints.push((*mode_id,model_id)),
}
}
}
}
}
2023-10-06 06:52:04 +00:00
self.bvh=crate::bvh::generate_bvh(self.models.iter().map(|m|m.mesh().clone()).collect());
2023-10-05 03:04:04 +00:00
//I don't wanna write structs for temporary structures
//this code builds ModeDescriptions from the unsorted lists at the top of the function
starts.sort_by_key(|tup|tup.0);
let mut eshmep=std::collections::HashMap::new();
let mut modedatas:Vec<(u32,Vec<(u32,u32)>,Vec<(u32,u32)>,Vec<u32>)>=starts.into_iter().enumerate().map(|(i,tup)|{
eshmep.insert(tup.0,i);
(tup.1,Vec::new(),Vec::new(),Vec::new())
}).collect();
for tup in spawns{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.1.push((tup.2,tup.1));
}
}
}
for tup in ordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.2.push((tup.2,tup.1));
}
}
}
for tup in unordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.3.push(tup.1);
}
}
}
let num_modes=self.modes.len();
for (mode_id,mode) in eshmep{
self.mode_from_mode_id.insert(mode_id,num_modes+mode);
}
self.modes.append(&mut modedatas.into_iter().map(|mut tup|{
tup.1.sort_by_key(|tup|tup.0);
tup.2.sort_by_key(|tup|tup.0);
let mut eshmep1=std::collections::HashMap::new();
let mut eshmep2=std::collections::HashMap::new();
crate::model::ModeDescription{
start:tup.0,
spawns:tup.1.into_iter().enumerate().map(|(i,tup)|{eshmep1.insert(tup.0,i);tup.1}).collect(),
ordered_checkpoints:tup.2.into_iter().enumerate().map(|(i,tup)|{eshmep2.insert(tup.0,i);tup.1}).collect(),
unordered_checkpoints:tup.3,
spawn_from_stage_id:eshmep1,
ordered_checkpoint_from_checkpoint_id:eshmep2,
}
}).collect());
println!("Physics Objects: {}",self.models.len());
}
pub fn get_mode(&self,mode_id:u32)->Option<&crate::model::ModeDescription>{
if let Some(&mode)=self.mode_from_mode_id.get(&mode_id){
self.modes.get(mode)
}else{
None
}
}
2023-09-09 03:14:18 +00:00
//tickless gaming
2023-09-19 01:06:03 +00:00
pub fn run(&mut self, time_limit:TIME){
2023-09-09 03:14:18 +00:00
//prepare is ommitted - everything is done via instructions.
2023-09-19 01:06:03 +00:00
while let Some(instruction) = self.next_instruction(time_limit) {//collect
2023-09-09 03:14:18 +00:00
//process
self.process_instruction(instruction);
//write hash lol
2023-09-08 18:33:16 +00:00
}
}
2023-09-09 03:14:18 +00:00
pub fn advance_time(&mut self, time: TIME){
self.body.advance_time(time);
self.time=time;
2023-09-08 18:33:16 +00:00
}
2023-09-08 18:33:20 +00:00
2023-09-20 00:53:29 +00:00
fn set_control(&mut self,control:u32,state:bool){
self.controls=if state{self.controls|control}else{self.controls&!control};
}
fn jump(&mut self){
self.grounded=false;//do I need this?
let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){
for (_,contact) in &self.contacts {
2023-09-21 07:01:31 +00:00
let n=contact.normal(&self.models);
let d=velocity.dot(n);
if d<0f32{
(*velocity)-=d/n.length_squared()*n;
}
}
}
fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){
for (_,contact) in &self.contacts {
2023-09-21 07:01:31 +00:00
let n=contact.normal(&self.models);
let d=acceleration.dot(n);
if d<0f32{
(*acceleration)-=d/n.length_squared()*n;
}
}
}
2023-09-09 00:34:26 +00:00
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
return Some(TimedInstruction{
2023-10-03 05:45:20 +00:00
time:(self.time*self.style.strafe_tick_num/self.style.strafe_tick_den+1)*self.style.strafe_tick_den/self.style.strafe_tick_num,
//only poll the physics if there is a before and after mouse event
2023-09-09 00:34:26 +00:00
instruction:PhysicsInstruction::StrafeTick
2023-09-08 18:33:20 +00:00
});
}
2023-09-08 21:11:24 +00:00
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
2023-09-20 00:53:29 +00:00
fn refresh_walk_target(&mut self){
//calculate acceleration yada yada
if self.grounded{
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
let mut target_diff=v-self.body.velocity;
target_diff.y=0f32;
if target_diff==glam::Vec3::ZERO{
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.state=WalkEnum::Reached;
}else{
2023-10-03 05:45:20 +00:00
let accel=self.style.walk_accel.min(self.style.gravity.length()*self.style.friction);
2023-09-20 00:53:29 +00:00
let time_delta=target_diff.length()/accel;
let mut a=target_diff/time_delta;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME;
self.walk.state=WalkEnum::Transient;
}
}else{
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
}
}
2023-09-09 00:34:26 +00:00
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-09-19 04:10:07 +00:00
//check if you have a valid walk state and create an instruction
if self.grounded{
match self.walk.state{
WalkEnum::Transient=>Some(TimedInstruction{
time:self.walk.target_time,
instruction:PhysicsInstruction::ReachWalkTargetVelocity
}),
WalkEnum::Reached=>None,
}
2023-09-19 04:10:07 +00:00
}else{
return None;
}
2023-09-08 21:11:24 +00:00
}
2023-09-18 20:20:51 +00:00
fn mesh(&self) -> TreyMesh {
2023-10-06 03:32:02 +00:00
let mut aabb=TreyMesh::new();
for vertex in TreyMesh::unit_vertices(){
2023-10-03 05:45:20 +00:00
aabb.grow(self.body.position+self.style.hitbox_halfsize*vertex);
2023-09-18 20:20:51 +00:00
}
aabb
}
2023-09-19 01:06:03 +00:00
fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
2023-09-18 20:20:51 +00:00
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
2023-09-19 01:06:03 +00:00
let mut best_time=time_limit;
let mut exit_face:Option<TreyMeshFace>=None;
2023-09-18 20:20:51 +00:00
let mesh0=self.mesh();
2023-09-21 07:01:31 +00:00
let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh();
2023-09-19 01:06:03 +00:00
let (v,a)=(-self.body.velocity,self.body.acceleration);
2023-09-18 20:20:51 +00:00
//collect x
2023-09-19 01:06:03 +00:00
match collision_data.face {
2023-10-06 03:32:02 +00:00
TreyMeshFace::Top|TreyMeshFace::Back|TreyMeshFace::Bottom|TreyMeshFace::Front=>{
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*-t{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Left);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&v.x+a.x*-t<0f32{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Right);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 01:06:03 +00:00
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Left=>{
2023-09-19 01:06:03 +00:00
//generate event if v.x<0||a.x<0
if -v.x<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Right=>{
2023-09-19 01:06:03 +00:00
//generate event if 0<v.x||0<a.x
if 0f32<(-v.x){
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
2023-09-18 20:20:51 +00:00
}
//collect y
2023-09-19 01:06:03 +00:00
match collision_data.face {
2023-10-06 03:32:02 +00:00
TreyMeshFace::Left|TreyMeshFace::Back|TreyMeshFace::Right|TreyMeshFace::Front=>{
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*-t{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Bottom);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&v.y+a.y*-t<0f32{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Top);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 01:06:03 +00:00
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Bottom=>{
2023-09-19 01:06:03 +00:00
//generate event if v.y<0||a.y<0
if -v.y<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Top=>{
2023-09-19 01:06:03 +00:00
//generate event if 0<v.y||0<a.y
if 0f32<(-v.y){
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
2023-09-18 20:20:51 +00:00
}
//collect z
2023-09-19 01:06:03 +00:00
match collision_data.face {
2023-10-06 03:32:02 +00:00
TreyMeshFace::Left|TreyMeshFace::Bottom|TreyMeshFace::Right|TreyMeshFace::Top=>{
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*-t{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Front);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
2023-09-19 01:06:03 +00:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:27:02 +00:00
if time<=t_time&&t_time<best_time&&v.z+a.z*-t<0f32{
2023-09-19 01:06:03 +00:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Back);
2023-09-20 01:14:24 +00:00
break;
2023-09-19 01:06:03 +00:00
}
2023-09-18 20:20:51 +00:00
}
2023-09-19 01:06:03 +00:00
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Front=>{
2023-09-19 01:06:03 +00:00
//generate event if v.z<0||a.z<0
if -v.z<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
2023-10-06 03:32:02 +00:00
TreyMeshFace::Back=>{
2023-09-19 01:06:03 +00:00
//generate event if 0<v.z||0<a.z
if 0f32<(-v.z){
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
2023-09-18 20:20:51 +00:00
}
//generate instruction
2023-09-19 01:06:03 +00:00
if let Some(face) = exit_face{
2023-09-18 20:20:51 +00:00
return Some(TimedInstruction {
2023-09-19 01:06:03 +00:00
time: best_time,
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
2023-09-18 20:20:51 +00:00
})
}
2023-09-08 22:55:33 +00:00
None
}
2023-09-19 01:06:03 +00:00
fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-10-06 03:32:19 +00:00
let mesh0=self.mesh();
let mesh1=self.models.get(model_id as usize).unwrap().mesh();
let (p,v,a,time)=(self.body.position,self.body.velocity,self.body.acceleration,self.body.time);
2023-09-18 20:20:51 +00:00
//find best t
2023-09-19 01:06:03 +00:00
let mut best_time=time_limit;
2023-09-18 20:20:51 +00:00
let mut best_face:Option<TreyMeshFace>=None;
//collect x
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Left);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Right);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
//collect y
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Bottom);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Top);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
//collect z
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Front);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
2023-09-19 06:33:52 +00:00
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
2023-09-19 01:50:12 +00:00
//must collide now or in the future
2023-09-18 20:20:51 +00:00
//must beat the current soonest collision time
//must be moving towards surface
2023-10-06 03:32:19 +00:00
let t_time=time+((t as f64)*1_000_000_000f64) as TIME;
2023-09-19 01:06:03 +00:00
if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 20:20:51 +00:00
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
2023-09-19 01:06:03 +00:00
best_time=t_time;
2023-09-18 20:20:51 +00:00
best_face=Some(TreyMeshFace::Back);
2023-09-20 01:14:24 +00:00
break;
2023-09-18 20:20:51 +00:00
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
2023-09-19 01:06:03 +00:00
time: best_time,
2023-09-18 20:20:51 +00:00
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
2023-09-08 22:55:33 +00:00
None
}
2023-09-08 18:33:20 +00:00
}
2023-09-09 00:34:26 +00:00
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-09-08 18:33:20 +00:00
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
2023-09-09 00:34:26 +00:00
//check for collision stop instructions with curent contacts
for (_,collision_data) in &self.contacts {
2023-09-19 01:06:03 +00:00
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
2023-09-08 18:33:20 +00:00
}
// for collision_data in &self.intersects{
// collector.collect(self.predict_collision_end2(self.time,time_limit,collision_data));
// }
2023-09-09 00:34:26 +00:00
//check for collision start instructions (against every part in the game with no optimization!!)
2023-10-06 06:52:04 +00:00
let mut aabb=crate::aabb::Aabb::new();
aabb.grow(self.body.extrapolated_position(self.time));
aabb.grow(self.body.extrapolated_position(time_limit));
aabb.inflate(self.style.hitbox_halfsize);
self.bvh.the_tester(&aabb,&mut |id|{
if !(self.contacts.contains_key(&id)||self.intersects.contains_key(&id)){
collector.collect(self.predict_collision_start(self.time,time_limit,id));
}
2023-10-06 06:52:04 +00:00
});
2023-09-08 21:11:24 +00:00
if self.grounded {
//walk maintenance
2023-09-09 03:12:58 +00:00
collector.collect(self.next_walk_instruction());
2023-09-08 21:11:24 +00:00
}else{
//check to see when the next strafe tick is
2023-09-09 03:12:58 +00:00
collector.collect(self.next_strafe_instruction());
2023-09-08 18:33:20 +00:00
}
2023-09-09 03:12:58 +00:00
collector.instruction()
2023-09-08 18:33:20 +00:00
}
2023-09-08 18:33:16 +00:00
}
2023-09-09 00:15:49 +00:00
2023-09-09 00:34:26 +00:00
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
2023-09-09 03:14:18 +00:00
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
match &ins.instruction {
2023-10-05 03:04:04 +00:00
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)
|PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_))
|PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_))
|PhysicsInstruction::StrafeTick => (),
2023-10-05 06:51:39 +00:00
_=>println!("{}|{:?}",ins.time,ins.instruction),
}
//selectively update body
match &ins.instruction {
2023-10-05 03:04:04 +00:00
//PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),//dodge time for mouse movement
2023-10-04 21:01:06 +00:00
PhysicsInstruction::Input(_)
|PhysicsInstruction::ReachWalkTargetVelocity
|PhysicsInstruction::CollisionStart(_)
|PhysicsInstruction::CollisionEnd(_)
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
}
2023-09-09 03:14:18 +00:00
match ins.instruction {
2023-09-18 20:20:51 +00:00
PhysicsInstruction::CollisionStart(c) => {
let model=c.model(&self.models).unwrap();
match &model.attributes{
PhysicsCollisionAttributes::Contact{contacting,general}=>{
match &contacting.surf{
Some(surf)=>println!("I'm surfing!"),
None=>match &c.face {
2023-10-06 03:32:02 +00:00
TreyMeshFace::Top => {
//ground
self.grounded=true;
},
_ => (),
},
}
2023-10-05 03:04:04 +00:00
//check ground
self.contacts.insert(c.model,c);
match &general.stage_element{
Some(stage_element)=>{
if stage_element.force||self.game.stage_id<stage_element.stage_id{
self.game.stage_id=stage_element.stage_id;
}
match stage_element.behaviour{
crate::model::StageElementBehaviour::SpawnAt=>(),
crate::model::StageElementBehaviour::Trigger
|crate::model::StageElementBehaviour::Teleport=>{
//TODO make good
if let Some(mode)=self.get_mode(stage_element.mode_id){
if let Some(&spawn)=mode.get_spawn_model_id(self.game.stage_id){
if let Some(model)=self.models.get(spawn as usize){
self.body.position=model.transform.transform_point3(glam::Vec3::Y)+glam::Vec3::Y*(self.style.hitbox_halfsize.y+0.1);
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
self.intersects.clear();
self.body.acceleration=self.style.gravity;
self.walk.state=WalkEnum::Reached;
self.grounded=false;
}else{println!("bad1");}
}else{println!("bad2");}
}else{println!("bad3");}
},
crate::model::StageElementBehaviour::Platform=>(),
}
},
None=>(),
}
//flatten v
let mut v=self.body.velocity;
self.contact_constrain_velocity(&mut v);
2023-10-05 03:04:04 +00:00
match &general.booster{
Some(booster)=>{
v+=booster.velocity;
self.contact_constrain_velocity(&mut v);
},
None=>(),
}
self.body.velocity=v;
if self.grounded&&self.style.get_control(StyleModifiers::CONTROL_JUMP,self.controls){
self.jump();
}
self.refresh_walk_target();
},
PhysicsCollisionAttributes::Intersect{intersecting,general}=>{
//I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop
self.intersects.insert(c.model,c);
},
2023-09-20 00:53:29 +00:00
}
2023-09-18 20:20:51 +00:00
},
PhysicsInstruction::CollisionEnd(c) => {
let model=c.model(&self.models).unwrap();
match &model.attributes{
PhysicsCollisionAttributes::Contact{contacting,general}=>{
self.contacts.remove(&c.model);//remove contact before calling contact_constrain_acceleration
let mut a=self.style.gravity;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
//check ground
match &c.face {
2023-10-06 03:32:02 +00:00
TreyMeshFace::Top => {
self.grounded=false;
},
_ => (),
}
self.refresh_walk_target();
},
PhysicsCollisionAttributes::Intersect{intersecting,general}=>{
self.intersects.remove(&c.model);
},
}
2023-09-18 20:20:51 +00:00
},
2023-09-09 03:14:18 +00:00
PhysicsInstruction::StrafeTick => {
2023-10-05 03:04:04 +00:00
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
2023-10-03 23:52:45 +00:00
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
2023-09-20 00:53:29 +00:00
let d=self.body.velocity.dot(control_dir);
2023-10-03 05:45:20 +00:00
if d<self.style.mv {
let mut v=self.body.velocity+(self.style.mv-d)*control_dir;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
2023-09-09 03:14:18 +00:00
}
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
self.walk.state=WalkEnum::Reached;
},
2023-09-20 00:53:29 +00:00
PhysicsInstruction::Input(input_instruction) => {
2023-10-02 02:25:16 +00:00
let mut refresh_walk_target=true;
let mut refresh_walk_target_velocity=true;
2023-09-20 00:53:29 +00:00
match input_instruction{
2023-10-05 03:04:04 +00:00
PhysicsInputInstruction::SetNextMouse(m) => {
self.camera.angles=self.camera.simulate_move_angles(self.next_mouse.pos);
(self.camera.mouse,self.next_mouse)=(self.next_mouse.clone(),m);
},
PhysicsInputInstruction::ReplaceMouse(m0,m1) => {
self.camera.angles=self.camera.simulate_move_angles(m0.pos);
(self.camera.mouse,self.next_mouse)=(m0,m1);
2023-09-20 00:53:29 +00:00
},
2023-10-05 03:04:04 +00:00
PhysicsInputInstruction::SetMoveForward(s) => self.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s),
PhysicsInputInstruction::SetMoveLeft(s) => self.set_control(StyleModifiers::CONTROL_MOVELEFT,s),
PhysicsInputInstruction::SetMoveBack(s) => self.set_control(StyleModifiers::CONTROL_MOVEBACK,s),
PhysicsInputInstruction::SetMoveRight(s) => self.set_control(StyleModifiers::CONTROL_MOVERIGHT,s),
PhysicsInputInstruction::SetMoveUp(s) => self.set_control(StyleModifiers::CONTROL_MOVEUP,s),
PhysicsInputInstruction::SetMoveDown(s) => self.set_control(StyleModifiers::CONTROL_MOVEDOWN,s),
PhysicsInputInstruction::SetJump(s) => {
2023-10-03 23:52:45 +00:00
self.set_control(StyleModifiers::CONTROL_JUMP,s);
2023-09-20 00:53:29 +00:00
if self.grounded{
self.jump();
}
2023-10-02 02:25:16 +00:00
refresh_walk_target_velocity=false;
2023-09-20 00:53:29 +00:00
},
2023-10-05 03:04:04 +00:00
PhysicsInputInstruction::SetZoom(s) => {
2023-10-03 23:52:45 +00:00
self.set_control(StyleModifiers::CONTROL_ZOOM,s);
2023-10-02 02:25:16 +00:00
refresh_walk_target=false;
2023-09-20 00:53:29 +00:00
},
2023-10-05 03:04:04 +00:00
PhysicsInputInstruction::Reset => {
2023-09-20 00:53:29 +00:00
//temp
self.body.position=self.spawn_point;
2023-10-02 02:25:16 +00:00
self.body.velocity=glam::Vec3::ZERO;
2023-09-20 00:53:29 +00:00
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
2023-10-03 05:45:20 +00:00
self.body.acceleration=self.style.gravity;
self.walk.state=WalkEnum::Reached;
2023-09-20 00:53:29 +00:00
self.grounded=false;
2023-10-02 02:25:16 +00:00
refresh_walk_target=false;
2023-09-20 00:53:29 +00:00
},
2023-10-05 03:04:04 +00:00
PhysicsInputInstruction::Idle => {refresh_walk_target=false;},//literally idle!
2023-09-20 00:53:29 +00:00
}
if refresh_walk_target{
2023-10-02 02:25:16 +00:00
//calculate walk target velocity
if refresh_walk_target_velocity{
2023-10-05 03:04:04 +00:00
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
2023-10-03 23:52:45 +00:00
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
2023-10-03 05:45:20 +00:00
self.walk.target_velocity=self.style.walkspeed*control_dir;
2023-10-02 02:25:16 +00:00
}
2023-09-20 00:53:29 +00:00
self.refresh_walk_target();
2023-09-19 04:10:07 +00:00
}
},
2023-09-09 03:14:18 +00:00
}
2023-09-09 00:15:49 +00:00
}
2023-09-23 02:41:27 +00:00
}